

Bash

Notes for Professionals

Bash

Notes for Professionals

100+ pages

of professional hints and tricks

GoalKicker.com

Disclaimer

This is an unocial free book created for educational purposes and is

Free Programming Books

not aliated with ocial Bash group(s) or company(s).

All trademarks and registered trademarks are

the property of their respective owners

Contents

About ... 1

Chapter 1: Getting started with Bash ... 2

Section 1.1: Hello World ... 2

Section 1.2: Hello World Using Variables ... 4

Section 1.3: Hello World with User Input .. 4

Section 1.4: Importance of Quoting in Strings .. 5

Section 1.5: Viewing information for Bash built-ins .. 6

Section 1.6: Hello World in "Debug" mode .. 6

Section 1.7: Handling Named Arguments .. 7

Chapter 2: Script shebang .. 8

Section 2.1: Env shebang .. 8

Section 2.2: Direct shebang .. 8

Section 2.3: Other shebangs .. 8

Chapter 3: Navigating directories .. 10

Section 3.1: Absolute vs relative directories .. 10

Section 3.2: Change to the last directory .. 10

Section 3.3: Change to the home directory .. 10

Section 3.4: Change to the Directory of the Script .. 10

Chapter 4: Listing Files .. 12

Section 4.1: List Files in a Long Listing Format ... 12

Section 4.2: List the Ten Most Recently Modified Files .. 13

Section 4.3: List All Files Including Dotfiles .. 13

Section 4.4: List Files Without Using `ls` ... 13

Section 4.5: List Files ... 14

Section 4.6: List Files in a Tree-Like Format ... 14

Section 4.7: List Files Sorted by Size .. 14

Chapter 5: Using cat .. 16

Section 5.1: Concatenate files ... 16

Section 5.2: Printing the Contents of a File ... 16

Section 5.3: Write to a file ... 17

Section 5.4: Show non printable characters ... 17

Section 5.5: Read from standard input ... 18

Section 5.6: Display line numbers with output ... 18

Section 5.7: Concatenate gzipped files ... 18

Chapter 6: Grep ... 20

Section 6.1: How to search a file for a pattern ... 20

Chapter 7: Aliasing ... 21

Section 7.1: Bypass an alias .. 21

Section 7.2: Create an Alias .. 21

Section 7.3: Remove an alias ... 21

Section 7.4: The BASH_ALIASES is an internal bash assoc array .. 22

Section 7.5: Expand alias .. 22

Section 7.6: List all Aliases .. 22

Chapter 8: Jobs and Processes ... 23

Section 8.1: Job handling .. 23

Section 8.2: Check which process running on specific port .. 25

Section 8.3: Disowning background job .. 25

Section 8.4: List Current Jobs ... 25

Section 8.5: Finding information about a running process ... 25

Section 8.6: List all processes ... 26

Chapter 9: Redirection ... 27

Section 9.1: Redirecting standard output .. 27

Section 9.2: Append vs Truncate ... 27

Section 9.3: Redirecting both STDOUT and STDERR .. 28

Section 9.4: Using named pipes ... 28

Section 9.5: Redirection to network addresses .. 30

Section 9.6: Print error messages to stderr .. 30

Section 9.7: Redirecting multiple commands to the same file ... 31

Section 9.8: Redirecting STDIN .. 31

Section 9.9: Redirecting STDERR ... 32

Section 9.10: STDIN, STDOUT and STDERR explained .. 32

Chapter 10: Control Structures .. 34

Section 10.1: Conditional execution of command lists ... 34

Section 10.2: If statement .. 35

Section 10.3: Looping over an array .. 36

Section 10.4: Using For Loop to List Iterate Over Numbers .. 37

Section 10.5: continue and break ... 37

Section 10.6: Loop break ... 37

Section 10.7: While Loop ... 38

Section 10.8: For Loop with C-style syntax ... 39

Section 10.9: Until Loop ... 39

Section 10.10: Switch statement with case .. 39

Section 10.11: For Loop without a list-of-words parameter ... 40

Chapter 11: true, false and : commands .. 41

Section 11.1: Infinite Loop ... 41

Section 11.2: Function Return .. 41

Section 11.3: Code that will always/never be executed ... 41

Chapter 12: Arrays .. 42

Section 12.1: Array Assignments ... 42

Section 12.2: Accessing Array Elements .. 43

Section 12.3: Array Modification ... 43

Section 12.4: Array Iteration ... 44

Section 12.5: Array Length .. 45

Section 12.6: Associative Arrays ... 45

Section 12.7: Looping through an array .. 46

Section 12.8: Destroy, Delete, or Unset an Array ... 47

Section 12.9: Array from string ... 47

Section 12.10: List of initialized indexes .. 47

Section 12.11: Reading an entire file into an array .. 48

Section 12.12: Array insert function .. 48

Chapter 13: Associative arrays .. 50

Section 13.1: Examining assoc arrays .. 50

Chapter 14: Functions ... 52

Section 14.1: Functions with arguments ... 52

Section 14.2: Simple Function ... 53

Section 14.3: Handling flags and optional parameters ... 53

Section 14.4: Print the function definition .. 54

Section 14.5: A function that accepts named parameters .. 54

Section 14.6: Return value from a function ... 55

Section 14.7: The exit code of a function is the exit code of its last command ... 55

Chapter 15: Bash Parameter Expansion .. 57

Section 15.1: Modifying the case of alphabetic characters ... 57

Section 15.2: Length of parameter .. 57

Section 15.3: Replace pattern in string .. 58

Section 15.4: Substrings and subarrays .. 59

Section 15.5: Delete a pattern from the beginning of a string .. 60

Section 15.6: Parameter indirection ... 61

Section 15.7: Parameter expansion and filenames .. 61

Section 15.8: Default value substitution ... 62

Section 15.9: Delete a pattern from the end of a string .. 62

Section 15.10: Munging during expansion ... 63

Section 15.11: Error if variable is empty or unset .. 64

Chapter 16: Copying (cp) ... 65

Section 16.1: Copy a single file .. 65

Section 16.2: Copy folders ... 65

Chapter 17: Find ... 66

Section 17.1: Searching for a file by name or extension .. 66

Section 17.2: Executing commands against a found file ... 66

Section 17.3: Finding file by access / modification time .. 67

Section 17.4: Finding files according to size .. 68

Section 17.5: Filter the path ... 69

Section 17.6: Finding files by type .. 70

Section 17.7: Finding files by specific extension .. 70

Chapter 18: Using sort .. 71

Section 18.1: Sort command output ... 71

Section 18.2: Make output unique .. 71

Section 18.3: Numeric sort .. 71

Section 18.4: Sort by keys ... 72

Chapter 19: Sourcing ... 74

Section 19.1: Sourcing a file ... 74

Section 19.2: Sourcing a virtual environment ... 74

Chapter 20: Here documents and here strings ... 76

Section 20.1: Execute command with here document ... 76

Section 20.2: Indenting here documents .. 76

Section 20.3: Create a file ... 77

Section 20.4: Here strings ... 77

Section 20.5: Run several commands with sudo ... 78

Section 20.6: Limit Strings .. 78

Chapter 21: Quoting ... 80

Section 21.1: Double quotes for variable and command substitution .. 80

Section 21.2: Dierence between double quote and single quote ... 80

Section 21.3: Newlines and control characters ... 81

Section 21.4: Quoting literal text ... 81

Chapter 22: Conditional Expressions .. 83

Section 22.1: File type tests ... 83

Section 22.2: String comparison and matching ... 83

Section 22.3: Test on exit status of a command .. 85

Section 22.4: One liner test ... 85

Section 22.5: File comparison .. 85

Section 22.6: File access tests .. 86

Section 22.7: Numerical comparisons ... 86

Chapter 23: Scripting with Parameters ... 88

Section 23.1: Multiple Parameter Parsing .. 88

Section 23.2: Argument parsing using a for loop .. 89

Section 23.3: Wrapper script .. 89

Section 23.4: Accessing Parameters ... 90

Section 23.5: Split string into an array in Bash ... 91

Chapter 24: Bash history substitutions ... 92

Section 24.1: Quick Reference .. 92

Section 24.2: Repeat previous command with sudo ... 93

Section 24.3: Search in the command history by pattern ... 93

Section 24.4: Switch to newly created directory with !#:N .. 93

Section 24.5: Using !$.. 94

Section 24.6: Repeat the previous command with a substitution .. 94

Chapter 25: Math .. 95

Section 25.1: Math using dc .. 95

Section 25.2: Math using bash capabilities ... 96

Section 25.3: Math using bc .. 96

Section 25.4: Math using expr .. 97

Chapter 26: Bash Arithmetic ... 98

Section 26.1: Simple arithmetic with (()) ... 98

Section 26.2: Arithmetic command ... 98

Section 26.3: Simple arithmetic with expr ... 99

Chapter 27: Scoping .. 100

Section 27.1: Dynamic scoping in action ... 100

Chapter 28: Process substitution .. 101

Section 28.1: Compare two files from the web ... 101

Section 28.2: Feed a while loop with the output of a command .. 101

Section 28.3: Concatenating files .. 101

Section 28.4: Stream a file through multiple programs at once .. 101

Section 28.5: With paste command .. 102

Section 28.6: To avoid usage of a sub-shell ... 102

Chapter 29: Programmable completion ... 103

Section 29.1: Simple completion using function ... 103

Section 29.2: Simple completion for options and filenames .. 103

Chapter 30: Customizing PS1 .. 104

Section 30.1: Colorize and customize terminal prompt ... 104

Section 30.2: Show git branch name in terminal prompt ... 105

Section 30.3: Show time in terminal prompt ... 105

Section 30.4: Show a git branch using PROMPT_COMMAND .. 106

Section 30.5: Change PS1 prompt .. 106

Section 30.6: Show previous command return status and time .. 107

Chapter 31: Brace Expansion ... 109

Section 31.1: Modifying filename extension ... 109

Section 31.2: Create directories to group files by month and year .. 109

Section 31.3: Create a backup of dotfiles .. 109

Section 31.4: Use increments .. 109

Section 31.5: Using brace expansion to create lists ... 109

Section 31.6: Make Multiple Directories with Sub-Directories ... 110

Chapter 32: getopts : smart positional-parameter parsing .. 111

Section 32.1: pingnmap ... 111

Chapter 33: Debugging .. 113

Section 33.1: Checking the syntax of a script with "-n" .. 113

Section 33.2: Debugging using bashdb .. 113

Section 33.3: Debugging a bash script with "-x" .. 113

Chapter 34: Pattern matching and regular expressions ... 115

Section 34.1: Get captured groups from a regex match against a string ... 115

Section 34.2: Behaviour when a glob does not match anything ... 115

Section 34.3: Check if a string matches a regular expression .. 116

Section 34.4: Regex matching .. 116

Section 34.5: The * glob .. 116

Section 34.6: The ** glob ... 117

Section 34.7: The ? glob .. 117

Section 34.8: The [] glob ... 118

Section 34.9: Matching hidden files ... 119

Section 34.10: Case insensitive matching .. 119

Section 34.11: Extended globbing ... 119

Chapter 35: Change shell .. 121

Section 35.1: Find the current shell .. 121

Section 35.2: List available shells ... 121

Section 35.3: Change the shell ... 121

Chapter 36: Internal variables ... 122

Section 36.1: Bash internal variables at a glance ... 122

Section 36.2: $@ .. 123

Section 36.3: $# ... 124

Section 36.4: $HISTSIZE .. 124

Section 36.5: $FUNCNAME ... 124

Section 36.6: $HOME ... 124

Section 36.7: $IFS ... 124

Section 36.8: $OLDPWD .. 125

Section 36.9: $PWD ... 125

Section 36.10: $1 $2 $3 etc.. ... 125

Section 36.11: $* .. 126

Section 36.12: $! .. 126

Section 36.13: $? ... 126

Section 36.14: $$.. 126

Section 36.15: $RANDOM .. 126

Section 36.16: $BASHPID ... 127

Section 36.17: $BASH_ENV ... 127

Section 36.18: $BASH_VERSINFO .. 127

Section 36.19: $BASH_VERSION .. 127

Section 36.20: $EDITOR .. 127

Section 36.21: $HOSTNAME .. 127

Section 36.22: $HOSTTYPE ... 128

Section 36.23: $MACHTYPE .. 128

Section 36.24: $OSTYPE .. 128

Section 36.25: $PATH .. 128

Section 36.26: $PPID .. 128

Section 36.27: $SECONDS ... 128

Section 36.28: $SHELLOPTS ... 129

Section 36.29: $_ ... 129

Section 36.30: $GROUPS ... 129

Section 36.31: $LINENO ... 129

Section 36.32: $SHLVL .. 129

Section 36.33: $UID .. 131

Chapter 37: Job Control .. 132

Section 37.1: List background processes .. 132

Section 37.2: Bring a background process to the foreground ... 132

Section 37.3: Restart stopped background process .. 132

Section 37.4: Run command in background .. 132

Section 37.5: Stop a foreground process .. 132

Chapter 38: Case statement ... 133

Section 38.1: Simple case statement ... 133

Section 38.2: Case statement with fall through ... 133

Section 38.3: Fall through only if subsequent pattern(s) match .. 133

Chapter 39: Read a file (data stream, variable) line-by-line (and/or field-by-field)? 135

Section 39.1: Looping through a file line by line ... 135

Section 39.2: Looping through the output of a command field by field ... 135

Section 39.3: Read lines of a file into an array ... 135

Section 39.4: Read lines of a string into an array .. 136

Section 39.5: Looping through a string line by line .. 136

Section 39.6: Looping through the output of a command line by line .. 136

Section 39.7: Read a file field by field ... 136

Section 39.8: Read a string field by field .. 137

Section 39.9: Read fields of a file into an array ... 137

Section 39.10: Read fields of a string into an array ... 137

Section 39.11: Reads file (/etc/passwd) line by line and field by field ... 138

Chapter 40: File execution sequence ... 140

Section 40.1: .profile vs .bash_profile (and .bash_login) ... 140

Chapter 41: Splitting Files .. 141

Section 41.1: Split a file ... 141

Chapter 42: File Transfer using scp .. 142

Section 42.1: scp transferring file ... 142

Section 42.2: scp transferring multiple files ... 142

Section 42.3: Downloading file using scp .. 142

Chapter 43: Pipelines .. 143

Section 43.1: Using |& ... 143

Section 43.2: Show all processes paginated .. 144

Section 43.3: Modify continuous output of a command ... 144

Chapter 44: Managing PATH environment variable ... 145

Section 44.1: Add a path to the PATH environment variable .. 145

Section 44.2: Remove a path from the PATH environment variable .. 145

Chapter 45: Word splitting .. 147

Section 45.1: What, when and Why? .. 147

Section 45.2: Bad eects of word splitting ... 147

Section 45.3: Usefulness of word splitting .. 148

Section 45.4: Splitting by separator changes ... 149

Section 45.5: Splitting with IFS .. 149

Section 45.6: IFS & word splitting ... 149

Chapter 46: Avoiding date using printf .. 151

Section 46.1: Get the current date .. 151

Section 46.2: Set variable to current time .. 151

Chapter 47: Using "trap" to react to signals and system events ... 152

Section 47.1: Introduction: clean up temporary files .. 152

Section 47.2: Catching SIGINT or Ctl+C ... 152

Section 47.3: Accumulate a list of trap work to run at exit ... 153

Section 47.4: Killing Child Processes on Exit ... 153

Section 47.5: react on change of terminals window size .. 153

Chapter 48: Chain of commands and operations ... 155

Section 48.1: Counting a text pattern ocurrence .. 155

Section 48.2: transfer root cmd output to user file ... 155

Section 48.3: logical chaining of commands with && and || ... 155

Section 48.4: serial chaining of commands with semicolon ... 155

Section 48.5: chaining commands with | ... 156

Chapter 49: Type of Shells .. 157

Section 49.1: Start an interactive shell ... 157

Section 49.2: Detect type of shell .. 157

Section 49.3: Introduction to dot files .. 157

Chapter 50: Color script output (cross-platform) ... 159

Section 50.1: color-output.sh .. 159

Chapter 51: co-processes ... 160

Section 51.1: Hello World ... 160

Chapter 52: Typing variables ... 161

Section 52.1: declare weakly typed variables .. 161

Chapter 53: Jobs at specific times .. 162

Section 53.1: Execute job once at specific time .. 162

Section 53.2: Doing jobs at specified times repeatedly using systemd.timer .. 162

Chapter 54: Handling the system prompt .. 164

Section 54.1: Using the PROMPT_COMMAND envrionment variable .. 164

Section 54.2: Using PS2 .. 165

Section 54.3: Using PS3 ... 165

Section 54.4: Using PS4 .. 165

Section 54.5: Using PS1 ... 166

Chapter 55: The cut command .. 167

Section 55.1: Only one delimiter character ... 167

Section 55.2: Repeated delimiters are interpreted as empty fields .. 167

Section 55.3: No quoting ... 167

Section 55.4: Extracting, not manipulating ... 167

Chapter 56: Bash on Windows 10 .. 169

Section 56.1: Readme .. 169

Chapter 57: Cut Command .. 170

Section 57.1: Show the first column of a file ... 170

Section 57.2: Show columns x to y of a file .. 170

Chapter 58: global and local variables ... 171

Section 58.1: Global variables ... 171

Section 58.2: Local variables .. 171

Section 58.3: Mixing the two together ... 171

Chapter 59: CGI Scripts .. 173

Section 59.1: Request Method: GET ... 173

Section 59.2: Request Method: POST /w JSON ... 175

Chapter 60: Select keyword .. 177

Section 60.1: Select keyword can be used for getting input argument in a menu format 177

Chapter 61: When to use eval ... 178

Section 61.1: Using Eval ... 178

Section 61.2: Using Eval with Getopt .. 179

Chapter 62: Networking With Bash ... 180

Section 62.1: Networking commands .. 180

Chapter 63: Parallel ... 182

Section 63.1: Parallelize repetitive tasks on list of files .. 182

Section 63.2: Parallelize STDIN .. 183

Chapter 64: Decoding URL .. 184

Section 64.1: Simple example ... 184

Section 64.2: Using printf to decode a string ... 184

Chapter 65: Design Patterns ... 185

Section 65.1: The Publish/Subscribe (Pub/Sub) Pattern ... 185

Chapter 66: Pitfalls .. 187

Section 66.1: Whitespace When Assigning Variables .. 187

Section 66.2: Failed commands do not stop script execution .. 187

Section 66.3: Missing The Last Line in a File ... 187

Appendix A: Keyboard shortcuts .. 189

Section A.1: Editing Shortcuts ... 189

Section A.2: Recall Shortcuts ... 189

Section A.3: Macros ... 189

Section A.4: Custome Key Bindings .. 189

Section A.5: Job Control ... 190

Credits .. 191

You may also like .. 195

About

Please feel free to share this PDF with anyone for free,

latest version of this book can be downloaded from:

https://goalkicker.com/BashBook

This Bash Notes for Professionals book is compiled from Stack Overflow

Documentation, the content is written by the beautiful people at Stack Overflow.

Text content is released under Creative Commons BY-SA, see credits at the end

of this book whom contributed to the various chapters. Images may be copyright

of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not

affiliated with official Bash group(s) or company(s) nor Stack Overflow. All

trademarks and registered trademarks are the property of their respective

company owners

The information presented in this book is not guaranteed to be correct nor

accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

GoalKicker.com – Bash Notes for Professionals

1

Chapter 1: Getting started with Bash

Version Release Date

0.99

1989-06-08

1.01

1989-06-23

2.0

1996-12-31

2.02

1998-04-20

2.03

1999-02-19

2.04

2001-03-21

2.05b

2002-07-17

3.0

2004-08-03

3.1

2005-12-08

3.2

2006-10-11

4.0

2009-02-20

4.1

2009-12-31

4.2

2011-02-13

4.3

2014-02-26

4.4

2016-09-15

Section 1.1: Hello World

Interactive Shell

The Bash shell is commonly used interactively: It lets you enter and edit commands, then executes them when you press the Return key. Many Unix-based and Unix-like operating systems use Bash as their default shell

(notably Linux and macOS). The terminal automatically enters an interactive Bash shell process on startup.

Output Hello World by typing the following:

echo "Hello World"

 #> Hello World # Output Example

Notes

You can change the shell by just typing the name of the shell in terminal. For example: sh, bash, etc.

echo is a Bash builtin command that writes the arguments it receives to the standard output. It appends a

newline to the output, by default.

Non-Interactive Shell

The Bash shell can also be run non-interactively from a script, making the shell require no human interaction.

Interactive behavior and scripted behavior should be identical – an important design consideration of Unix V7

Bourne shell and transitively Bash. Therefore anything that can be done at the command line can be put in a script file for reuse.

Follow these steps to create a Hello World script:

1. Create a new file called hello-world.sh

GoalKicker.com – Bash Notes for Professionals

2

touch hello-world.sh

2. Make the script executable by running chmod +x hello-world.sh 3. Add this code:

 #!/bin/bash

echo "Hello World"

Line 1: The first line of the script must start with the character sequence #!, referred to as shebang 1. The shebang instructs the operating system to run /bin/bash, the Bash shell, passing it the script's path as an argument.

E.g. /bin/bash hello-world.sh

Line 2: Uses the echo command to write Hello World to the standard output.

4. Execute the hello-world.sh script from the command line using one of the following:

. /hello-world.sh – most commonly used, and recommended

/bin/bash hello-world.sh

bash hello-world.sh – assuming /bin is in your $PATH

sh hello-world.sh

For real production use, you would omit the .sh extension (which is misleading anyway, since this is a Bash script, not a sh script) and perhaps move the file to a directory within your PATH so that it is available to you regardless of your current working directory, just like a system command such as cat or ls.

Common mistakes include:

1. Forgetting to apply execute permission on the file, i.e., chmod +x hello-world.sh, resulting in the output of

. /hello-world.sh: Permission denied.

2. Editing the script on Windows, which produces incorrect line ending characters that Bash cannot handle.

A common symptom is : command not found where the carriage return has forced the cursor to the

beginning of line, overwriting the text before the colon in the error message.

The script can be fixed using the dos2unix program.

An example use: dos2unix hello-world.sh

 dos2unix edits the file inline.

3. Using sh . /hello-world.sh, not realizing that bash and sh are distinct shells with distinct features (though since Bash is backwards-compatible, the opposite mistake is harmless).

Anyway, simply relying on the script's shebang line is vastly preferable to explicitly writing bash or sh (or python or perl or awk or ruby or...) before each script's file name.

A common shebang line to use in order to make your script more portable is to use #!/usr/bin/env bash

instead of hard-coding a path to Bash. That way, /usr/bin/env has to exist, but beyond that point, bash just

GoalKicker.com – Bash Notes for Professionals

3

needs to be on your PATH. On many systems, /bin/bash doesn't exist, and you should use

/usr/local/bin/bash or some other absolute path; this change avoids having to figure out the details of that.

1 Also referred to as sha-bang, hashbang, pound-bang, hash-pling.

Section 1.2: Hello World Using Variables

Create a new file called hello.sh with the following content and give it executable permissions with chmod +x hello.sh.

Execute/Run via: . /hello.sh

 #!/usr/bin/env bash

 # Note that spaces cannot be used around thè=àssignment operator

whom_variable="World"

 # Use printf to safely output the data

printf "Hello, %s\n" "$whom_variable"

 #> Hello, World

This will print Hello, World to standard output when executed.

To tell bash where the script is you need to be very specific, by pointing it to the containing directory, normally with

./ if it is your working directory, where . is an alias to the current directory. If you do not specify the directory, bash tries to locate the script in one of the directories contained in the $PATH environment variable.

The following code accepts an argument $1, which is the first command line argument, and outputs it in a

formatted string, following Hello,.

Execute/Run via: . /hello.sh World

 #!/usr/bin/env bash

printf "Hello, %s\n" "$1"

 #> Hello, World

It is important to note that $1 has to be quoted in double quote, not single quote. "$1" expands to the first command line argument, as desired, while '$1' evaluates to literal string $1.

Security Note:

Read Security implications of forgetting to quote a variable in bash shells to understand the importance of placing the variable text within double quotes.

Section 1.3: Hello World with User Input

The following will prompt a user for input, and then store that input as a string (text) in a variable. The variable is then used to give a message to the user.

GoalKicker.com – Bash Notes for Professionals

4

 #!/usr/bin/env bash

echo "Who are you?"

read name

echo "Hello, $name."

The command read here reads one line of data from standard input into the variable name. This is then referenced using $name and printed to standard out using echo.

Example output:

$. /hello_world.sh

Who are you?

Matt

Hello, Matt.

Here the user entered the name "Matt", and this code was used to say Hello, Matt..

And if you want to append something to the variable value while printing it, use curly brackets around the variable name as shown in the following example:

 #!/usr/bin/env bash

echo "What are you doing?"

read action

echo "You are ${action}ing."

Example output:

$. /hello_world.sh

What are you doing?

Sleep

You are Sleeping.

Here when user enters an action, "ing" is appended to that action while printing.

Section 1.4: Importance of Quoting in Strings

Quoting is important for string expansion in bash. With these, you can control how the bash parses and expands

your strings.

There are two types of quoting:

Weak: uses double quotes: "

Strong: uses single quotes: '

If you want to bash to expand your argument, you can use Weak Quoting:

 #!/usr/bin/env bash

world="World"

echo "Hello $world"

 #> Hello World

If you don't want to bash to expand your argument, you can use Strong Quoting:

 #!/usr/bin/env bash

world="World"

echo 'Hello $world'

GoalKicker.com – Bash Notes for Professionals

5

 #> Hello $world

You can also use escape to prevent expansion:

 #!/usr/bin/env bash

world="World"

echo "Hello \$world"

 #> Hello $world

For more detailed information other than beginner details, you can continue to read it here.

Section 1.5: Viewing information for Bash built-ins

help <command>

This will display the Bash help (manual) page for the specified built-in.

For example, help unset will show:

unset: unset [-f] [-v] [-n] [name ...]

Unset values and attributes of shell variables and functions.

For each NAME, remove the corresponding variable or function.

Options:

-f treat each NAME as a shell function

-v treat each NAME as a shell variable

-n treat each NAME as a name reference and unset the variable itself

rather than the variable it references

Without options, unset first tries to unset a variable, and if that fails,

tries to unset a function.

Some variables cannot be unset; also seèreadonly'.

Exit Status:

Returns success unless an invalid option is given or a NAME is read-only.

To see a list of all built-ins with a short description, use

help -d

Section 1.6: Hello World in "Debug" mode

$ cat hello.sh

 #!/bin/bash

echo "Hello World"

$ bash -x hello.sh

+ echo Hello World

Hello World

The -x argument enables you to walk through each line in the script. One good example is here:

$ cat hello.sh

 #!/bin/bash

echo "Hello World\n"

GoalKicker.com – Bash Notes for Professionals

6

adding_string_to_number="s"

v=$(expr 5 + $adding_string_to_number)

$. /hello.sh

Hello World

expr: non-integer argument

The above prompted error is not enough to trace the script; however, using the following way gives you a better

sense where to look for the error in the script.

$ bash -x hello.sh

+ echo Hello World\n

Hello World

+ adding_string_to_number=s

+ expr 5 + s

expr: non-integer argument

+ v=

Section 1.7: Handling Named Arguments

 #!/bin/bash

deploy=false

uglify=false

while (($# > 1)); do case $1 in

--deploy) deploy="$2" ;;

--uglify) uglify="$2" ;;

*) break;

esac; shift 2

done

$deploy && echo "will deploy... deploy = $deploy"

$uglify && echo "will uglify... uglify = $uglify"

 # how to run

 # chmod +x script.sh

 # ./script.sh --deploy true --uglify false

GoalKicker.com – Bash Notes for Professionals

7

Chapter 2: Script shebang

Section 2.1: Env shebang

To execute a script file with the bash executable found in the PATH environment variable by using the executable env, the first line of a script file must indicate the absolute path to the env executable with the argument bash:

 #!/usr/bin/env bash

The env path in the shebang is resolved and used only if a script is directly launch like this:

script.sh

The script must have execution permission.

The shebang is ignored when a bash interpreter is explicitly indicated to execute a script:

bash script.sh

Section 2.2: Direct shebang

To execute a script file with the bash interpreter, the first line of a script file must indicate the absolute path to the bash executable to use:

 #!/bin/bash

The bash path in the shebang is resolved and used only if a script is directly launch like this:

. /script.sh

The script must have execution permission.

The shebang is ignored when a bash interpreter is explicitly indicated to execute a script:

bash script.sh

Section 2.3: Other shebangs

There are two kinds of programs the kernel knows of. A binary program is identified by it's ELF

(ExtenableLoadableFormat) header, which is usually produced by a compiler. The second one are scripts of any kind.

If a file starts in the very first line with the sequence #! then the next string has to be a pathname of an interpreter.

If the kernel reads this line, it calls the interpreter named by this pathname and gives all of the following words in this line as arguments to the interpreter. If there is no file named "something" or "wrong":

 #!/bin/bash something wrong

echo "This line never gets printed"

bash tries to execute its argument "something wrong" which doesn't exist. The name of the script file is added too.

To see this clearly use an echo shebang:

GoalKicker.com – Bash Notes for Professionals

8

 #"/bin/echo something wrong

 # and now call this script named "thisscript" like so:

 # thisscript one two

 # the output will be:

something wrong . /thisscript one two

Some programs like awk use this technique to run longer scripts residing in a disk file.

GoalKicker.com – Bash Notes for Professionals

9

Chapter 3: Navigating directories

Section 3.1: Absolute vs relative directories

To change to an absolutely specified directory, use the entire name, starting with a slash /, thus:

cd /home/username/project/abc

If you want to change to a directory near your current on, you can specify a relative location. For example, if you are already in /home/username/project, you can enter the subdirectory abc thus:

cd abc

If you want to go to the directory above the current directory, you can use the alias ... For example, if you were in

/home/username/project/abc and wanted to go to /home/username/project, then you would do the following: cd ..

This may also be called going "up" a directory.

Section 3.2: Change to the last directory

For the current shell, this takes you to the previous directory that you were in, no matter where it was.

cd -

Doing it multiple times effectively "toggles" you being in the current directory or the previous one.

Section 3.3: Change to the home directory

The default directory is the home directory ($HOME, typically /home/username), so cd without any directory takes you there

cd

Or you could be more explicit:

cd $HOME

A shortcut for the home directory is ~, so that could be used as well.

cd ~

Section 3.4: Change to the Directory of the Script

In general, there are two types of Bash scripts:

1. System tools which operate from the current working directory

2. Project tools which modify files relative to their own place in the files system

For the second type of scripts, it is useful to change to the directory where the script is stored. This can be done with the following command:

GoalKicker.com – Bash Notes for Professionals

10

cd "$(dirname "$(readlink -f "$0")")"

This command runs 3 commands:

1. readlink -f "$0" determines the path to the current script ($0)

2. dirname converts the path to script to the path to its directory

3. cd changes the current work directory to the directory it receives from dirname

GoalKicker.com – Bash Notes for Professionals

11

Chapter 4: Listing Files

Option

Description

-a, --all

List all entries including ones that start with a dot

-A, --almost-all

List all entries excluding . and ..

-c

Sort files by change time

-d, --directory

List directory entries

-h, --human-readable Show sizes in human readable format (i.e. K, M)

-H

Same as above only with powers of 1000 instead of 1024

-l

Show contents in long-listing format

-o

Long -listing format without group info

-r, --reverse

Show contents in reverse order

-s, --size

Print size of each file in blocks

-S

Sort by file size

--sort=WORD

Sort contents by a word. (i.e size, version, status)

-t

Sort by modification time

-u

Sort by last access time

-v

Sort by version

-1

List one file per line

Section 4.1: List Files in a Long Listing Format

The ls command's -l option prints a specified directory's contents in a long listing format. If no directory is

specified then, by default, the contents of the current directory are listed.

ls -l /etc

Example Output:

total 1204

drwxr-xr-x 3 root root 4096 Apr 21 03:44 acpi

-rw-r--r-- 1 root root 3028 Apr 21 03:38 adduser.conf

drwxr-xr-x 2 root root 4096 Jun 11 20:42 alternatives

...

The output first displays total, which indicates the total size in blocks of all the files in the listed directory. It then displays eight columns of information for each file in the listed directory. Below are the details for each column in the output:

Column No.

Example

Description

1.1

d

File type (see table below)

1.2

rwxr-xr-x

Permission string

2

3

Number of hard links

3

root

Owner name

4

root

Owner group

5

4096

File size in bytes

6

Apr 21 03:44 Modification time

7

acpi

File name

GoalKicker.com – Bash Notes for Professionals

12

File Type

The file type can be one of any of the following characters.

Character

File Type

-

Regular file

b

Block special file

c

Character special file

C

High performance ("contiguous data") file

d

Directory

D

Door (special IPC file in Solaris 2.5+ only)

l

Symbolic link

M

Off-line ("migrated") file (Cray DMF)

n

Network special file (HP-UX)

p

FIFO (named pipe)

P

Port (special system file in Solaris 10+ only)

s

Socket

?

Some other file type

Section 4.2: List the Ten Most Recently Modified Files

The following will list up to ten of the most recently modified files in the current directory, using a long listing format (-l) and sorted by time (-t).

ls -lt | head

Section 4.3: List All Files Including Dotfiles

A dotfile is a file whose names begin with a .. These are normally hidden by ls and not listed unless requested.

For example the following output of ls:

$ ls

bin pki

The -a or --all option will list all files, including dotfiles.

$ ls -a

. .ansible .bash_logout .bashrc .lesshst .puppetlabs .viminfo

.. .bash_history .bash_profile bin pki .ssh

The -A or --almost-all option will list all files, including dotfiles, but does not list implied . and ... Note that . is the current directory and .. is the parent directory.

$ ls -A

.ansible .bash_logout .bashrc .lesshst .puppetlabs .viminfo

.bash_history .bash_profile bin pki .ssh

Section 4.4: List Files Without Using `ls`

Use the Bash shell's filename expansion and brace expansion capabilities to obtain the filenames:

GoalKicker.com – Bash Notes for Professionals

13

 # display the files and directories that are in the current directory

printf "%s\n" *

 # display only the directories in the current directory

printf "%s\n" */

 # display only (some) image files

printf "%s\n" *. {gif,jpg,png}

To capture a list of files into a variable for processing, it is typically good practice to use a bash array: files=(*)

 # iterate over them

for file in "${files[@]}"; do

echo "$file"

done

Section 4.5: List Files

The ls command lists the contents of a specified directory, excluding dotfiles. If no directory is specified then, by default, the contents of the current directory are listed.

Listed files are sorted alphabetically, by default, and aligned in columns if they don’t fit on one line.

$ ls

apt configs Documents Fonts Music Programming Templates workspace

bin Desktop eclipse git Pictures Public Videos

Section 4.6: List Files in a Tree-Like Format

The tree command lists the contents of a specified directory in a tree-like format. If no directory is specified then, by default, the contents of the current directory are listed.

Example Output:

$ tree /tmp

/tmp

├── 5037

├── adb.log

└── evince-20965

└── image.FPWTJY.png

Use the tree command's -L option to limit the display depth and the -d option to only list directories.

Example Output:

$ tree -L 1 -d /tmp

/tmp

└── evince-20965

Section 4.7: List Files Sorted by Size

The ls command's -S option sorts the files in descending order of file size.

GoalKicker.com – Bash Notes for Professionals

14

$ ls -l -S . /Fruits

total 444

-rw-rw-rw- 1 root root 295303 Jul 28 19:19 apples.jpg

-rw-rw-rw- 1 root root 102283 Jul 28 19:19 kiwis.jpg

-rw-rw-rw- 1 root root 50197 Jul 28 19:19 bananas.jpg

When used with the -r option the sort order is reversed.

$ ls -l -S -r /Fruits

total 444

-rw-rw-rw- 1 root root 50197 Jul 28 19:19 bananas.jpg

-rw-rw-rw- 1 root root 102283 Jul 28 19:19 kiwis.jpg

-rw-rw-rw- 1 root root 295303 Jul 28 19:19 apples.jpg

GoalKicker.com – Bash Notes for Professionals

15

Chapter 5: Using cat

Option

Details

-n

Print line numbers

-v

Show non-printing characters using ^ and M- notation except LFD and TAB

-T

Show TAB characters as ^I

-E

Show linefeed(LF) characters as $

-e

Same as -vE

-b

Number nonempty output lines, overrides -n

-A

equivalent to -vET

-s

suppress repeated empty output lines, s refers to squeeze

Section 5.1: Concatenate files

This is the primary purpose of cat.

cat file1 file2 file3 > file_all

cat can also be used similarly to concatenate files as part of a pipeline, e.g.

cat file1 file2 file3 | grep foo

Section 5.2: Printing the Contents of a File

cat file.txt

will print the contents of a file.

If the file contains non-ASCII characters, you can display those characters symbolically with cat -v. This can be quite useful for situations where control characters would otherwise be invisible.

cat -v unicode.txt

Very often, for interactive use, you are better off using an interactive pager like less or more, though. (less is far more powerful than more and it is advised to use less more often than more.)

less file.txt

To pass the contents of a file as input to a command. An approach usually seen as better (UUOC) is to use redirection.

tr A-Z a-z < file.txt # as an alternative to cat file.txt | tr A-Z a-z

In case the content needs to be listed backwards from its end the command tac can be used:

tac file.txt

If you want to print the contents with line numbers, then use -n with cat:

cat -n file.txt

GoalKicker.com – Bash Notes for Professionals

16

To display the contents of a file in a completely unambiguous byte-by-byte form, a hex dump is the standard solution. This is good for very brief snippets of a file, such as when you don't know the precise encoding. The

standard hex dump utility is od -cH, though the representation is slightly cumbersome; common replacements include xxd and hexdump.

$ printf 'Hëllö wörld' | xxd

0000000: 48c3 ab6c 6cc3 b620 77c3 b672 6c64 H..ll.. w..rld

Section 5.3: Write to a file

cat >file

It will let you write the text on terminal which will be saved in a file named file.

cat >>file

will do the same, except it will append the text to the end of the file.

N.B: Ctrl+D to end writing text on terminal (Linux)

A here document can be used to inline the contents of a file into a command line or a script:

cat << END >file

Hello, World.

END

The token after the << redirection symbol is an arbitrary string which needs to occur alone on a line (with no leading or trailing whitespace) to indicate the end of the here document. You can add quoting to prevent the shell from

performing command substitution and variable interpolation:

cat <<'fnord'

 Nothing in `herè will be $changed

 fnord

(Without the quotes, here would be executed as a command, and $changed would be substituted with the value of

the variable changed -- or nothing, if it was undefined.)

Section 5.4: Show non printable characters

This is useful to see if there are any non-printable characters, or non-ASCII characters.

e.g. If you have copy-pasted the code from web, you may have quotes like ” instead of standard ".

$ cat -v file.txt

$ cat -vE file.txt # Useful in detecting trailing spaces.

e.g.

$ echo '” ' | cat -vE # echo | will be replaced by actual file.

M-bM-^@M-^] $

You may also want to use cat -A (A for All) that is equivalent to cat -vET. It will display TAB characters (displayed

GoalKicker.com – Bash Notes for Professionals

17

as ^I), non printable characters and end of each line:

$ echo '” `' | cat -A

M-bM-^@M-^]^I`$

Section 5.5: Read from standard input

cat < file.txt

Output is same as cat file.txt, but it reads the contents of the file from standard input instead of directly from the file.

printf "first line\nSecond line\n" | cat -n

The echo command before | outputs two lines. The cat command acts on the output to add line numbers.

Section 5.6: Display line numbers with output

Use the --number flag to print line numbers before each line. Alternatively, -n does the same thing.

$ cat --number file

1 line 1

2 line 2

3

4 line 4

5 line 5

To skip empty lines when counting lines, use the --number-nonblank, or simply -b.

$ cat -b file

1 line 1

2 line 2

3 line 4

4 line 5

Section 5.7: Concatenate gzipped files

Files compressed by gzip can be directly concatenated into larger gzipped files.

cat file1.gz file2.gz file3.gz > combined.gz

This is a property of gzip that is less efficient than concatenating the input files and gzipping the result: cat file1 file2 file3 | gzip > combined.gz

A complete demonstration:

echo 'Hello world!' > hello.txt

echo 'Howdy world!' > howdy.txt

gzip hello.txt

gzip howdy.txt

GoalKicker.com – Bash Notes for Professionals

18

cat hello.txt.gz howdy.txt.gz > greetings.txt.gz

gunzip greetings.txt.gz

cat greetings.txt

Which results in

Hello world!

Howdy world!

Notice that greetings.txt.gz is a single file and is decompressed as the single file greeting.txt. Contrast this with tar -czf hello.txt howdy.txt > greetings.tar.gz, which keeps the files separate inside the tarball.

GoalKicker.com – Bash Notes for Professionals

19

Chapter 6: Grep

Section 6.1: How to search a file for a pattern

To find the word foo in the file bar :

grep foo ~/Desktop/bar

To find all lines that do not contain foo in the file bar :

grep –v foo ~/Desktop/bar

To use find all words containing foo in the end (WIldcard Expansion):

grep "*foo" ~/Desktop/bar

GoalKicker.com – Bash Notes for Professionals

20

Chapter 7: Aliasing

Shell aliases are a simple way to create new commands or to wrap existing commands with code of your own. They

somewhat overlap with shell functions, which are however more versatile and should therefore often be preferred.

Section 7.1: Bypass an alias

Sometimes you may want to bypass an alias temporarily, without disabling it. To work with a concrete example,

consider this alias:

alias ls='ls --color=auto'

And let's say you want to use the ls command without disabling the alias. You have several options:

Use the command builtin: command ls

Use the full path of the command: /bin/ls

Add a \ anywhere in the command name, for example: \ls, or l\s

Quote the command: "ls" or 'ls'

Section 7.2: Create an Alias

alias word='command'

Invoking word will run command. Any arguments supplied to the alias are simply appended to the target of the alias: alias myAlias='some command --with --options'

myAlias foo bar baz

The shell will then execute:

some command --with --options foo bar baz

To include multiple commands in the same alias, you can string them together with && . For example: alias print_things='echo "foo" && echo "bar" && echo "baz"'

Section 7.3: Remove an alias

To remove an existing alias, use:

unalias {alias_name}

Example:

 # create an alias

$ alias now='date'

 # preview the alias

$ now

Thu Jul 21 17:11:25 CEST 2016

 # remove the alias

$ unalias now

GoalKicker.com – Bash Notes for Professionals

21

 # test if removed

$ now

-bash: now: command not found

Section 7.4: The BASH_ALIASES is an internal bash assoc

array

Aliases are named shortcuts of commands, one can define and use in interactive bash instances. They are held in

an associative array named BASH_ALIASES. To use this var in a script, it must be run within an interactive shell

 #!/bin/bash -li

 # note the -li above! -l makes this behave like a login shell

 # -i makes it behave like an interactive shell

 #

 # shopt -s expand_aliases will not work in most cases

echo There are ${#BASH_ALIASES[*]} aliases defined.

for ali in "${!BASH_ALIASES[@]}"; do

printf "alias: %-10s triggers: %s\n" "$ali" "${BASH_ALIASES[$ali]}"

done

Section 7.5: Expand alias

Assuming that bar is an alias for someCommand -flag1.

Type bar on the command line and then press Ctrl + alt + e

you'll get someCommand -flag1 where bar was standing.

Section 7.6: List all Aliases

alias -p

will list all the current aliases.

GoalKicker.com – Bash Notes for Professionals

22

Chapter 8: Jobs and Processes

Section 8.1: Job handling

Creating jobs

To create an job, just append a single & after the command:

$ sleep 10 &

[1] 20024

You can also make a running process a job by pressing Ctrl + z :

$ sleep 10

^Z

[1]+ Stopped sleep 10

Background and foreground a process

To bring the Process to the foreground, the command fg is used together with %

$ sleep 10 &

[1] 20024

$ fg %1

sleep 10

Now you can interact with the process. To bring it back to the background you can use the bg command. Due to the occupied terminal session, you need to stop the process first by pressing Ctrl + z .

$ sleep 10

^Z

[1]+ Stopped sleep 10

$ bg %1

[1]+ sleep 10 &

Due to the laziness of some Programmers, all these commands also work with a single % if there is only one

process, or for the first process in the list. For Example:

$ sleep 10 &

[1] 20024

$ fg % # to bring a process to foreground 'fg %' is also working.

sleep 10

or just

$ % # laziness knows no boundaries, '%' is also working.

sleep 10

Additionally, just typing fg or bg without any argument handles the last job:

$ sleep 20 &

$ sleep 10 &

$ fg

GoalKicker.com – Bash Notes for Professionals

23

sleep 10

^C

$ fg

sleep 20

Killing running jobs

$ sleep 10 &

[1] 20024

$ kill %1

[1]+ Terminated sleep 10

The sleep process runs in the background with process id (pid) 20024 and job number 1. In order to reference the process, you can use either the pid or the job number. If you use the job number, you must prefix it with %. The default kill signal sent by kill is SIGTERM, which allows the target process to exit gracefully.

Some common kill signals are shown below. To see a full list, run kill -l.

Signal name Signal value

Effect

SIGHUP

1

Hangup

SIGINT

2

Interrupt from keyboard

SIGKILL

9

Kill signal

SIGTERM

15

Termination signal

Start and kill specific processes

Probably the easiest way of killing a running process is by selecting it through the process name as in the following example using pkill command as

pkill -f test.py

(or) a more fool-proof way using pgrep to search for the actual process-id

kill $(pgrep -f 'python test.py')

The same result can be obtained using grep over ps -ef | grep name_of_process then killing the process associated with the resulting pid (process id). Selecting a process using its name is convinient in a testing

environment but can be really dangerous when the script is used in production: it is virtually impossible to be sure that the name will match the process you actually want to kill. In those cases, the following approach is actually much safe.

Start the script that will eventually killed with the following approach. Let's assume that the command you want to execute and eventually kill is python test.py.

 #!/bin/bash

if [[! -e /tmp/test.py.pid]]; then # Check if the file already exists python test.py & #+and if so do not run another process.

echo $! > /tmp/test.py.pid

else

echo -n "ERROR: The process is already running with pid "

cat /tmp/test.py.pid

echo

fi

This will create a file in the /tmp directory containing the pid of the python test.py process. If the file already exists, we assume that the command is already running and the script return an error.

GoalKicker.com – Bash Notes for Professionals

24

Then, when you want to kill it use the following script:

 #!/bin/bash

if [[-e /tmp/test.py.pid]]; then # If the file do not exists, then the kill `cat /tmp/test.py.pid` #+the process is not running. Useless

rm /tmp/test.py.pid #+trying to kill it.

else

echo "test.py is not running"

fi

that will kill exactly the process associated with your command, without relying on any volatile information (like the string used to run the command). Even in this case if the file does not exist, the script assume that you want to kill a non-running process.

This last example can be easily improved for running the same command multiple times (appending to the pid file

instead of overwriting it, for example) and to manage cases where the process dies before being killed.

Section 8.2: Check which process running on specific port

To check which process running on port 8080

lsof -i :8080

Section 8.3: Disowning background job

$ gzip extremelylargefile.txt &

$ bg

$ disown %1

This allows a long running process to continue once your shell (terminal, ssh, etc) is closed.

Section 8.4: List Current Jobs

$ tail -f /var/log/syslog > log.txt

[1]+ Stopped tail -f /var/log/syslog > log.txt $ sleep 10 &

$ jobs

[1]+ Stopped tail -f /var/log/syslog > log.txt

[2]- Running sleep 10 &

Section 8.5: Finding information about a running process

ps aux | grep < search-term> shows processes matching search-term

Example:

root@server7:~# ps aux | grep nginx

root 315 0.0 0.3 144392 1020 ? Ss May28 0:00 nginx: master process

/usr/sbin/nginx

www-data 5647 0.0 1.1 145124 3048 ? S Jul18 2:53 nginx: worker process

www-data 5648 0.0 0.1 144392 376 ? S Jul18 0:00 nginx: cache manager process

root 13134 0.0 0.3 4960 920 pts/0 S+ 14:33 0:00 grep --color=auto nginx

root@server7:~#

GoalKicker.com – Bash Notes for Professionals

25

Here, second column is the process id. For example, if you want to kill the nginx process, you can use the command kill 5647. It is always adviced to use the kill command with SIGTERM rather than SIGKILL.

Section 8.6: List all processes

There are two common ways to list all processes on a system. Both list all processes running by all users, though they differ in the format they output (the reason for the differences are historical).

ps -ef # lists all processes

ps aux # lists all processes in alternative format (BSD)

This can be used to check if a given application is running. For example, to check if the SSH server (sshd) is running: ps -ef | grep sshd

GoalKicker.com – Bash Notes for Professionals

26

Chapter 9: Redirection

Parameter

Details

internal file descriptor

An integer.

direction

One of > , < or < >

external file descriptor or path & followed by an integer for file descriptor or a path.

Section 9.1: Redirecting standard output

> redirect the standard output (aka STDOUT) of the current command into a file or another descriptor.

These examples write the output of the ls command into the file file.txt

ls > file.txt

> file.txt ls

The target file is created if it doesn't exists, otherwise this file is truncated.

The default redirection descriptor is the standard output or 1 when none is specified. This command is equivalent to the previous examples with the standard output explicitly indicated:

ls 1> file.txt

Note: the redirection is initialized by the executed shell and not by the executed command, therefore it is done before the command execution.

Section 9.2: Append vs Truncate

Truncate >

1. Create specified file if it does not exist.

2. Truncate (remove file's content)

3. Write to file

$ echo "first line" > /tmp/lines

$ echo "second line" > /tmp/lines

$ cat /tmp/lines

second line

Append >>

1. Create specified file if it does not exist.

2. Append file (writing at end of file).

 # Overwrite existing file

$ echo "first line" > /tmp/lines

 # Append a second line

$ echo "second line" >> /tmp/lines

$ cat /tmp/lines

first line

second line

GoalKicker.com – Bash Notes for Professionals

27

Section 9.3: Redirecting both STDOUT and STDERR

File descriptors like 0 and 1 are pointers. We change what file descriptors point to with redirection. >/dev/null means 1 points to /dev/null.

First we point 1 (STDOUT) to /dev/null then point 2 (STDERR) to whatever 1 points to.

 # STDERR is redirect to STDOUT: redirected to /dev/null,

 # effectually redirecting both STDERR and STDOUT to /dev/null

echo 'hello' > /dev/null 2>& 1

Version ≥ 4.0

This can be further shortened to the following:

echo 'hello' &> /dev/null

However, this form may be undesirable in production if shell compatibility is a concern as it conflicts with POSIX, introduces parsing ambiguity, and shells without this feature will misinterpret it:

 # Actual code

echo 'hello' &> /dev/null

echo 'hello' &> /dev/null 'goodbye'

 # Desired behavior

echo 'hello' > /dev/null 2>& 1

echo 'hello' 'goodbye' > /dev/null 2>& 1

 # Actual behavior

echo 'hello' &

echo 'hello' & goodbye > /dev/null

NOTE: &> is known to work as desired in both Bash and Zsh.

Section 9.4: Using named pipes

Sometimes you may want to output something by one program and input it into another program, but can't use a

standard pipe.

ls -l | grep ".log"

You could simply write to a temporary file:

touch tempFile.txt

ls -l > tempFile.txt

grep ".log" < tempFile.txt

This works fine for most applications, however, nobody will know what tempFile does and someone might remove

it if it contains the output of ls -l in that directory. This is where a named pipe comes into play:

mkfifo myPipe

ls -l > myPipe

grep ".log" < myPipe

myPipe is technically a file (everything is in Linux), so let's do ls -l in an empty directory that we just created a pipe in:

GoalKicker.com – Bash Notes for Professionals

28

mkdir pipeFolder

cd pipeFolder

mkfifo myPipe

ls -l

The output is:

prw-r--r-- 1 root root 0 Jul 25 11:20 myPipe

Notice the first character in the permissions, it's listed as a pipe, not a file.

Now let's do something cool.

Open one terminal, and make note of the directory (or create one so that cleanup is easy), and make a pipe.

mkfifo myPipe

Now let's put something in the pipe.

echo "Hello from the other side" > myPipe

You'll notice this hangs, the other side of the pipe is still closed. Let's open up the other side of the pipe and let that stuff through.

Open another terminal and go to the directory that the pipe is in (or if you know it, prepend it to the pipe):

cat < myPipe

You'll notice that after hello from the other side is output, the program in the first terminal finishes, as does that in the second terminal.

Now run the commands in reverse. Start with cat < myPipe and then echo something into it. It still works, because a program will wait until something is put into the pipe before terminating, because it knows it has to get

something.

Named pipes can be useful for moving information between terminals or between programs.

Pipes are small. Once full, the writer blocks until some reader reads the contents, so you need to either run the reader and writer in different terminals or run one or the other in the background:

ls -l /tmp > myPipe &

cat < myPipe

More examples using named pipes:

Example 1 - all commands on the same terminal / same shell

$ { ls -l && cat file3; } > mypipe &

$ cat < mypipe

 # Output: Prints ls -l data and then prints file3 contents on screen

Example 2 - all commands on the same terminal / same shell

$ ls -l > mypipe &

$ cat file3 > mypipe &

GoalKicker.com – Bash Notes for Professionals

29

$ cat < mypipe

 #Output: This prints on screen the contents of mypipe.

Mind that first contents of file3 are displayed and then the ls -l data is displayed (LIFO configuration).

Example 3 - all commands on the same terminal / same shell

$ { pipedata=$(< mypipe) && echo "$pipedata"; } & $ ls > mypipe

 # Output: Prints the output of ls directly on screen

Mind that the variable $pipedata is not available for usage in the main terminal / main shell since the use of

& invokes a subshell and $pipedata was only available in this subshell.

Example 4 - all commands on the same terminal / same shell

$ export pipedata

$ pipedata=$(< mypipe) &

$ ls -l *.sh > mypipe

$ echo "$pipedata"

 #Output : Prints correctly the contents of mypipe

This prints correctly the value of $pipedata variable in the main shell due to the export declaration of the

variable. The main terminal/main shell is not hanging due to the invocation of a background shell (&).

Section 9.5: Redirection to network addresses

Version ≥ 2.04

Bash treats some paths as special and can do some network communication by writing to

/dev/{udp|tcp}/host/port. Bash cannot setup a listening server, but can initiate a connection, and for TCP can read the results at least.

For example, to send a simple web request one could do:

exec 3</dev/tcp/www.google.com/80

printf 'GET / HTTP/1.0\r\n\r\n' >& 3

cat <& 3

and the results of www.google.com's default web page will be printed to stdout.

Similarly

printf 'HI\n' >/dev/udp/192.168.1.1/6666

would send a UDP message containing HI\n to a listener on 192.168.1.1:6666

Section 9.6: Print error messages to stderr

Error messages are generally included in a script for debugging purposes or for providing rich user experience.

Simply writing error message like this:

GoalKicker.com – Bash Notes for Professionals

30

cmd || echo 'cmd failed'

may work for simple cases but it's not the usual way. In this example, the error message will pollute the actual output of the script by mixing both errors and successful output in stdout.

In short, error message should go to stderr not stdout. It's pretty simple:

cmd || echo 'cmd failed' >/dev/stderr

Another example:

if cmd; then

echo 'success'

else

echo 'cmd failed' >/dev/stderr

fi

In the above example, the success message will be printed on stdout while the error message will be printed on

stderr.

A better way to print error message is to define a function:

err(){

echo "E: $*" >>/dev/stderr

}

Now, when you have to print an error:

err "My error message"

Section 9.7: Redirecting multiple commands to the same file

{

echo "contents of home directory"

ls ~

} > output.txt

Section 9.8: Redirecting STDIN

< reads from its right argument and writes to its left argument.

To write a file into STDIN we should read /tmp/a_file and write into STDIN i.e 0</tmp/a_file Note: Internal file descriptor defaults to 0 (STDIN) for <

$ echo "b" > /tmp/list.txt

$ echo "a" >> /tmp/list.txt

$ echo "c" >> /tmp/list.txt

$ sort < /tmp/list.txt

a

b

c

GoalKicker.com – Bash Notes for Professionals

31

Section 9.9: Redirecting STDERR

2 is STDERR.

$ echo_to_stderr 2>/dev/null # echos nothing

Definitions:

echo_to_stderr is a command that writes "stderr" to STDERR

echo_to_stderr () {

echo stderr >& 2

}

$ echo_to_stderr

stderr

Section 9.10: STDIN, STDOUT and STDERR explained

Commands have one input (STDIN) and two kinds of outputs, standard output (STDOUT) and standard error

(STDERR).

For example:

STDIN

root@server~ # read

Type some text here

Standard input is used to provide input to a program. (Here we're using the read builtin to read a line from STDIN.) STDOUT

root@server~ # ls file

file

Standard output is generally used for "normal" output from a command. For example, ls lists files, so the files are sent to STDOUT.

STDERR

root@server~ # ls anotherfile

ls: cannot access 'anotherfile': No such file or directory

Standard error is (as the name implies) used for error messages. Because this message is not a list of files, it is sent to STDERR.

STDIN, STDOUT and STDERR are the three standard streams. They are identified to the shell by a number rather than a name:

0 = Standard in

1 = Standard out

2 = Standard error

By default, STDIN is attached to the keyboard, and both STDOUT and STDERR appear in the terminal. However, we

GoalKicker.com – Bash Notes for Professionals

32

can redirect either STDOUT or STDERR to whatever we need. For example, let's say that you only need the standard out and all error messages printed on standard error should be suppressed. That's when we use the descriptors 1

and 2.

Redirecting STDERR to /dev/null

Taking the previous example,

root@server~ # ls anotherfile 2>/dev/null

root@server~ #

In this case, if there is any STDERR, it will be redirected to /dev/null (a special file which ignores anything put into it), so you won't get any error output on the shell.

GoalKicker.com – Bash Notes for Professionals

33

Chapter 10: Control Structures

Parameter to [or test

Details

File Operators

Details

-e "$file"

Returns true if the file exists.

-d "$file"

Returns true if the file exists and is a directory

-f "$file"

Returns true if the file exists and is a regular file

-h "$file"

Returns true if the file exists and is a symbolic link

String Comparators

Details

-z "$str"

True if length of string is zero

-n "$str

True if length of string is non-zero

True if string $str is equal to string $str2. Not best for integers. It may work but will be

"$str" = "$str2"

inconsitent

"$str" ! = "$str2"

True if the strings are not equal

Integer Comparators Details

"$int1" -eq "$int2"

True if the integers are equal

"$int1" -ne "$int2"

True if the integers are not equals

"$int1" -gt "$int2"

True if int1 is greater than int 2

"$int1" -ge "$int2"

True if int1 is greater than or equal to int2

"$int1" -lt "$int2"

True if int1 is less than int 2

"$int1" -le "$int2"

True if int1 is less than or equal to int2

Section 10.1: Conditional execution of command lists

How to use conditional execution of command lists

Any builtin command, expression, or function, as well as any external command or script can be executed

conditionally using the && (and) and || (or) operators.

For example, this will only print the current directory if the cd command was successful.

cd my_directory && pwd

Likewise, this will exit if the cd command fails, preventing catastrophe:

cd my_directory || exit

rm -rf *

When combining multiple statements in this manner, it's important to remember that (unlike many C-style

languages) these operators have no precedence and are left-associative.

Thus, this statement will work as expected...

cd my_directory && pwd || echo "No such directory"

If the cd succeeds, the && pwd executes and the current working directory name is printed. Unless pwd fails (a rarity) the || echo ... will not be executed.

If the cd fails, the && pwd will be skipped and the || echo ... will run.

But this will not (if you're thinking if...then...else)...

GoalKicker.com – Bash Notes for Professionals

34

cd my_directory && ls || echo "No such directory"

If the cd fails, the && ls is skipped and the || echo ... is executed.

If the cd succeeds, the && ls is executed.

If the ls succeeds, the || echo ... is ignored. (so far so good)

 BUT... if the ls fails, the || echo ... will also be executed.

 It is the ls, not the cd, that is the previous command.

Why use conditional execution of command lists

Conditional execution is a hair faster than if...then but its main advantage is allowing functions and scripts to exit early, or "short circuit".

Unlike many languages like C where memory is explicitly allocated for structs and variables and such (and thus

must be deallocated), bash handles this under the covers. In most cases, we don't have to clean up anything before leaving the function. A return statement will deallocate everything local to the function and pickup execution at the return address on the stack.

Returning from functions or exiting scripts as soon as possible can thus significantly improve performance and

reduce system load by avoiding the unnecessary execution of code. For example...

my_function () {

 ### ALWAYS CHECK THE RETURN CODE

 # one argument required. "" evaluates to false(1)

[["$1"]] || return 1

 # work with the argument. exit on failure

do_something_with "$1" || return 1

do_something_else || return 1

 # Success! no failures detected, or we wouldn't be here

return 0

}

Section 10.2: If statement

if [[$1 -eq 1]]; then

echo "1 was passed in the first parameter"

elif [[$1 -gt 2]]; then

echo "2 was not passed in the first parameter"

else

echo "The first parameter was not 1 and is not more than 2."

fi

The closing fi is necessary, but the elif and/or the else clauses can be omitted.

The semicolons before then are standard syntax for combining two commands on a single line; they can be omitted only if then is moved to the next line.

It's important to understand that the brackets [[are not part of the syntax, but are treated as a command; it is the exit code from this command that is being tested. Therefore, you must always include spaces around the brackets.

GoalKicker.com – Bash Notes for Professionals

35

This also means that the result of any command can be tested. If the exit code from the command is a zero, the statement is considered true.

if grep "foo" bar.txt; then

echo "foo was found"

else

echo "foo was not found"

fi

Mathematical expressions, when placed inside double parentheses, also return 0 or 1 in the same way, and can

also be tested:

if (($1 + 5 > 91)); then

echo "$1 is greater than 86"

fi

You may also come across if statements with single brackets. These are defined in the POSIX standard and are

guaranteed to work in all POSIX-compliant shells including Bash. The syntax is very similar to that in Bash:

if ["$1" -eq 1]; then

echo "1 was passed in the first parameter"

elif ["$1" -gt 2]; then

echo "2 was not passed in the first parameter"

else

echo "The first parameter was not 1 and is not more than 2."

fi

Section 10.3: Looping over an array

for loop:

arr=(a b c d e f)

for i in "${arr[@]}"; do

echo "$i"

done

Or

for ((i=0;i< ${#arr[@]};i++)); do

echo "${arr[$i]}"

done

while loop:

i=0

while [$i -lt ${#arr[@]}]; do

echo "${arr[$i]}"

i=$(expr $i + 1)

done

Or

i=0

while (($i < ${#arr[@]})); do

echo "${arr[$i]}"

((i++))

GoalKicker.com – Bash Notes for Professionals

36

done

Section 10.4: Using For Loop to List Iterate Over Numbers

 #! /bin/bash

for i in {1..10}; do # {1..10} expands to "1 2 3 4 5 6 7 8 9 10"

echo $i

done

This outputs the following:

1

2

3

4

5

6

7

8

8

10

Section 10.5: continue and break

Example for continue

for i in [series]

do

command 1

command 2

if (condition) # Condition to jump over command 3

continue # skip to the next value in "series"

fi

command 3

done

Example for break

for i in [series]

do

command 4

if (condition) # Condition to break the loop

then

command 5 # Command if the loop needs to be broken

break

fi

command 6 # Command to run if the "condition" is never true

done

Section 10.6: Loop break

Break multiple loop:

arr=(a b c d e f)

for i in "${arr[@]}"; do

echo "$i"

GoalKicker.com – Bash Notes for Professionals

37

 for j in "${arr[@]}"; do

echo "$j"

break 2

done

done

Output:

a

a

Break single loop:

arr=(a b c d e f)

for i in "${arr[@]}"; do

echo "$i"

for j in "${arr[@]}"; do

echo "$j"

break

done

done

Output:

a

a

b

a

c

a

d

a

e

a

f

a

Section 10.7: While Loop

 #! /bin/bash

i=0

while [$i -lt 5] #While i is less than 5

do

echo "i is currently $i"

i=$[$i+1] #Not the lack of spaces around the brackets. This makes it a not a test expression

done #ends the loop

Watch that there are spaces around the brackets during the test (after the while statement). These spaces are

necessary.

This loop outputs:

i is currently 0

i is currently 1

i is currently 2

i is currently 3

GoalKicker.com – Bash Notes for Professionals

38

i is currently 4

Section 10.8: For Loop with C-style syntax

The basic format of C-style for loop is:

for ((variable assignment; condition; iteration process))

Notes:

The assignment of the variable inside C-style for loop can contain spaces unlike the usual assignment

Variables inside C-style for loop aren't preceded with $.

Example:

for ((i = 0; i < 10; i++))

do

echo "The iteration number is $i"

done

Also we can process multiple variables inside C-style for loop:

for ((i = 0, j = 0; i < 10; i++, j = i * i))

do

echo "The square of $i is equal to $j"

done

Section 10.9: Until Loop

Until loop executes until condition is true

i=5

until [[i -eq 10]]; do #Checks if i=10

echo "i=$i" #Print the value of i

i=$((i+1)) #Increment i by 1

done

Output:

i=5

i=6

i=7

i=8

i=9

When i reaches 10 the condition in until loop becomes true and the loop ends.

Section 10.10: Switch statement with case

With the case statement you can match values against one variable.

The argument passed to case is expanded and try to match against each patterns.

If a match is found, the commands upto ;; are executed.

GoalKicker.com – Bash Notes for Professionals

39

case "$BASH_VERSION" in

[34]*)

echo {1..4}

;;

*)

seq -s" " 1 4

esac

Pattern are not regular expressions but shell pattern matching (aka globs).

Section 10.11: For Loop without a list-of-words parameter

for arg; do

echo arg=$arg

done

A for loop without a list of words parameter will iterate over the positional parameters instead. In other words, the above example is equivalent to this code:

for arg in "$@"; do

echo arg=$arg

done

In other words, if you catch yourself writing for i in "$@"; do ...; done, just drop the in part, and write simply for i; do ...; done.

GoalKicker.com – Bash Notes for Professionals

40

Chapter 11: true, false and : commands

Section 11.1: Infinite Loop

while true; do

echo ok

done

or

while :; do

echo ok

done

or

until false; do

echo ok

done

Section 11.2: Function Return

function positive() {

return 0

}

function negative() {

return 1

}

Section 11.3: Code that will always/never be executed

if true; then

echo Always executed

fi

if false; then

echo Never executed

fi

GoalKicker.com – Bash Notes for Professionals

41

Chapter 12: Arrays

Section 12.1: Array Assignments

List Assignment

If you are familiar with Perl, C, or Java, you might think that Bash would use commas to separate array elements, however this is not the case; instead, Bash uses spaces:

 # Array in Perl

my @array = (1, 2, 3, 4);

 # Array in Bash

array=(1 2 3 4)

Create an array with new elements:

array=('first element' 'second element' 'third element')

Subscript Assignment

Create an array with explicit element indices:

array=([3]='fourth element' [4]='fifth element')

Assignment by index

array[0]='first element'

array[1]='second element'

Assignment by name (associative array)

Version ≥ 4.0

declare -A array

array[first]='First element'

array[second]='Second element'

Dynamic Assignment

Create an array from the output of other command, for example use seq to get a range from 1 to 10:

array=(`seq 1 10`)

Assignment from script's input arguments:

array=("$@")

Assignment within loops:

while read -r; do

 #array+=("$REPLY") # Array append

array[$i]="$REPLY" # Assignment by index

let i++ # Increment index

done < <(seq 1 10) # command substitution

GoalKicker.com – Bash Notes for Professionals

42

echo ${array[@]} # output: 1 2 3 4 5 6 7 8 9 10

where $REPLY is always the current input

Section 12.2: Accessing Array Elements

Print element at index 0

echo "${array[0]}"

Version < 4.3

Print last element using substring expansion syntax

echo "${arr[@]: -1 }"

Version ≥ 4.3

Print last element using subscript syntax

echo "${array[-1]}"

Print all elements, each quoted separately

echo "${array[@]}"

Print all elements as a single quoted string

echo "${array[*]}"

Print all elements from index 1, each quoted separately

echo "${array[@]:1}"

Print 3 elements from index 1, each quoted separately

echo "${array[@]:1:3}"

String Operations

If referring to a single element, string operations are permitted:

array=(zero one two)

echo "${array[0]:0:3}" # gives out zer (chars at position 0, 1 and 2 in the string zero)

echo "${array[0]:1:3}" # gives out ero (chars at position 1, 2 and 3 in the string zero)

so ${array[$i]:N:M} gives out a string from the Nth position (starting from 0) in the string ${array[$i]} with M

following chars.

Section 12.3: Array Modification

Change Index

Initialize or update a particular element in the array

array[10]="elevenths element" # because it's starting with 0

GoalKicker.com – Bash Notes for Professionals

43

Version ≥ 3.1

Append

Modify array, adding elements to the end if no subscript is specified.

array+=('fourth element' 'fifth element')

Replace the entire array with a new parameter list.

array=("${array[@]}" "fourth element" "fifth element")

Add an element at the beginning:

array=("new element" "${array[@]}")

Insert

Insert an element at a given index:

arr=(a b c d)

 # insert an element at index 2

i=2

arr=("${arr[@]:0:$i}" 'new' "${arr[@]:$i}")

echo "${arr[2]}" #output: new

Delete

Delete array indexes using the unset builtin:

arr=(a b c)

echo "${arr[@]}" # outputs: a b c

echo "${!arr[@]}" # outputs: 0 1 2

unset -v 'arr[1]'

echo "${arr[@]}" # outputs: a c

echo "${!arr[@]}" # outputs: 0 2

Merge

array3=("${array1[@]}" "${array2[@]}")

This works for sparse arrays as well.

Re-indexing an array

This can be useful if elements have been removed from an array, or if you're unsure whether there are gaps in the array. To recreate the indices without gaps:

array=("${array[@]}")

Section 12.4: Array Iteration

Array iteration comes in two flavors, foreach and the classic for-loop:

a=(1 2 3 4)

 # foreach loop

GoalKicker.com – Bash Notes for Professionals

44

for y in "${a[@]}"; do

 # act on $y

echo "$y"

done

 # classic for-loop

for ((idx=0; idx < ${#a[@]}; ++idx)); do

 # act on ${a[$idx]}

echo "${a[$idx]}"

done

You can also iterate over the output of a command:

a=($(tr ',' ' ' <<< "a,b,c,d")) # tr can transform one character to another for y in "${a[@]}"; do

echo "$y"

done

Section 12.5: Array Length

${#array[@]} gives the length of the array ${array[@]}:

array=('first element' 'second element' 'third element')

echo "${#array[@]}" # gives out a length of 3

This works also with Strings in single elements:

echo "${#array[0]}" # gives out the lenght of the string at element 0: 13

Section 12.6: Associative Arrays

Version ≥ 4.0

Declare an associative array

declare -A aa

Declaring an associative array before initialization or use is mandatory.

Initialize elements

You can initialize elements one at a time as follows:

aa[hello]=world

aa[ab]=cd

aa["key with space"]="hello world"

You can also initialize an entire associative array in a single statement:

aa=([hello]=world [ab]=cd ["key with space"]="hello world") Access an associative array element

echo ${aa[hello]}

 # Out: world

Listing associative array keys

GoalKicker.com – Bash Notes for Professionals

45

echo "${!aa[@]}"

 #Out: hello ab key with space

Listing associative array values

echo "${aa[@]}"

 #Out: world cd hello world

Iterate over associative array keys and values

for key in "${!aa[@]}"; do

echo "Key: ${key}"

echo "Value: ${array[$key]}"

done

 # Out:

 # Key: hello

 # Value: world

 # Key: ab

 # Value: cd

 # Key: key with space

 # Value: hello world

Count associative array elements

echo "${#aa[@]}"

 # Out: 3

Section 12.7: Looping through an array

Our example array:

arr=(a b c d e f)

Using a for..in loop:

for i in "${arr[@]}"; do

echo "$i"

done

Version ≥ 2.04

Using C-style for loop:

for ((i=0;i< ${#arr[@]};i++)); do

echo "${arr[$i]}"

done

Using while loop:

i=0

while [$i -lt ${#arr[@]}]; do

echo "${arr[$i]}"

i=$((i + 1))

done

Version ≥ 2.04

GoalKicker.com – Bash Notes for Professionals

46

Using while loop with numerical conditional:

i=0

while (($i < ${#arr[@]})); do

echo "${arr[$i]}"

((i++))

done

Using an until loop:

i=0

until [$i -ge ${#arr[@]}]; do

echo "${arr[$i]}"

i=$((i + 1))

done

Version ≥ 2.04

Using an until loop with numerical conditional:

i=0

until (($i > = ${#arr[@]})); do

echo "${arr[$i]}"

((i++))

done

Section 12.8: Destroy, Delete, or Unset an Array

To destroy, delete, or unset an array:

unset array

To destroy, delete, or unset a single array element:

unset array[10]

Section 12.9: Array from string

stringVar="Apple Orange Banana Mango"

arrayVar=(${stringVar// / })

Each space in the string denotes a new item in the resulting array.

echo ${arrayVar[0]} # will print Apple

echo ${arrayVar[3]} # will print Mango

Similarly, other characters can be used for the delimiter.

stringVar="Apple+Orange+Banana+Mango"

arrayVar=(${stringVar//+/ })

echo ${arrayVar[0]} # will print Apple

echo ${arrayVar[2]} # will print Banana

Section 12.10: List of initialized indexes

Get the list of inialized indexes in an array

GoalKicker.com – Bash Notes for Professionals

47

$ arr[2]='second'

$ arr[10]='tenth'

$ arr[25]='twenty five'

$ echo ${!arr[@]}

2 10 25

Section 12.11: Reading an entire file into an array

Reading in a single step:

IFS=$'\n' read -r -a arr < file

Reading in a loop:

arr=()

while IFS= read -r line; do

arr+=("$line")

done

Version ≥ 4.0

Using mapfile or readarray (which are synonymous):

mapfile -t arr < file

readarray -t arr < file

Section 12.12: Array insert function

This function will insert an element into an array at a given index:

insert(){

h='

################## insert ########################

Usage:

insert arr_name index element

#

Parameters:

arr_name : Name of the array variable

index : Index to insert at

element : Element to insert

##

 '

[[$1 = -h]] && { echo "$h" >/dev/stderr; return 1; }

declare -n __arr__=$1 # reference to the array variable

i=$2 # index to insert at

el="$3" # element to insert

 # handle errors

[[! "$i" =~ ^[0-9]+$]] && { echo "E: insert: index must be a valid integer" >/dev/stderr; return 1; }

(($1 < 0)) && { echo "E: insert: index can not be negative" >/dev/stderr; return 1; }

 # Now insert $el at $i

__arr__=("${__arr__[@]:0:$i}" "$el" "${__arr__[@]:$i}")

}

Usage:

insert array_variable_name index element

GoalKicker.com – Bash Notes for Professionals

48

Example:

arr=(a b c d)

echo "${arr[2]}" # output: c

 # Now call the insert function and pass the array variable name,

 # index to insert at

 # and the element to insert

insert arr 2 'New Element'

 # 'New Element' was inserted at index 2 in arr, now print them

echo "${arr[2]}" # output: New Element

echo "${arr[3]}" # output: c

GoalKicker.com – Bash Notes for Professionals

49

Chapter 13: Associative arrays

Section 13.1: Examining assoc arrays

All needed usage shown with this snippet:

 #!/usr/bin/env bash

declare -A assoc_array=([key_string]=value \

[one]="something" \

[two]="another thing" \

[three]='mind the blanks!' \

[" four"]='count the blanks of this key later!' \

[IMPORTANT]='SPACES DO ADD UP!!!'

\

[1]='there are no integers!' \

[info]="to avoid history expansion " \

[info2]="quote exclamation mark with single quotes" \

)

echo # just a blank line

echo now here are the values of assoc_array:

echo ${assoc_array[@]}

echo not that useful,

echo # just a blank line

echo this is better:

declare -p assoc_array # -p == print

echo have a close look at the spaces above\! \! \!

echo # just a blank line

echo accessing the keys

echo the keys in assoc_array are ${!assoc_array[*]}

echo mind the use of indirection operator \!

echo # just a blank line

echo now we loop over the assoc_array line by line

echo note the \! indirection operator which works differently,

echo if used with assoc_array.

echo # just a blank line

for key in "${!assoc_array[@]}"; do # accessing keys using ! indirection!!!!

printf "key: \" %s\"\nvalue: \" %s\"\n\n" "$key" "${assoc_array[$key]}"

done

echo have a close look at the spaces in entries with keys two, three and four above\! \! \!

echo # just a blank line

echo # just another blank line

echo there is a difference using integers as keys\! \! \!

i=1

echo declaring an integer var i=1

echo # just a blank line

echo Within an integer_array bash recognizes artithmetic context.

echo Within an assoc_array bash DOES NOT recognize artithmetic context.

echo # just a blank line

echo this works: \${assoc_array[\$i]}: ${assoc_array[$i]}

echo this NOT!! : \${assoc_array[i]}: ${assoc_array[i]}

GoalKicker.com – Bash Notes for Professionals

50

echo # just a blank line

echo # just a blank line

echo an \${assoc_array[i]} has a string context within braces in contrast to an integer_array

declare -i integer_array=(one two three)

echo "doing a: declare -i integer_array=(one two three)"

echo # just a blank line

echo both forms do work: \${integer_array[i]} : ${integer_array[i]}

echo and this too: \${integer_array[\$i]} : ${integer_array[$i]}

GoalKicker.com – Bash Notes for Professionals

51

Chapter 14: Functions

Section 14.1: Functions with arguments

In helloJohn.sh:

 #!/bin/bash

greet() {

local name="$1"

echo "Hello, $name"

}

greet "John Doe"

 # running above script

$ bash helloJohn.sh

Hello, John Doe

1. If you don't modify the argument in any way, there is no need to copy it to a local variable - simply echo

"Hello, $1".

2. You can use $1, $2, $3 and so on to access the arguments inside the function.

Note: for arguments more than 9 $10 won't work (bash will read it as $10), you need to do ${10},

${11} and so on.

3. $@ refers to all arguments of a function:

 #!/bin/bash

foo() {

echo "$@"

}

foo 1 2 3 # output => 1 2 3

Note: You should practically always use double quotes around "$@", like here.

Omitting the quotes will cause the shell to expand wildcards (even when the user specifically quoted them in

order to avoid that) and generally introduce unwelcome behavior and potentially even security problems.

foo "string with spaces;" '$HOME' "*"

 # output => string with spaces; $HOME *

4. for default arguments use ${1:-default_val}. Eg:

 #!/bin/bash

foo() {

local val=${1:-25}

echo "$val"

}

GoalKicker.com – Bash Notes for Professionals

52

foo # output => 25

foo 30 # output => 30

5. to require an argument use ${var:?error message}

foo() {

local val=${1:?Must provide an argument}

echo "$val"

}

Section 14.2: Simple Function

In helloWorld.sh

 #!/bin/bash

 # Define a function greet

greet ()

{

echo "Hello World!"

}

 # Call the function greet

greet

In running the script, we see our message

$ bash helloWorld.sh

Hello World!

 Note that sourcing a file with functions makes them available in your current bash session.

$ source helloWorld.sh # or, more portably, ". helloWorld.sh"

$ greet

Hello World!

You can export a function in some shells, so that it is exposed to child processes.

bash -c 'greet' # fails

export -f greet # export function; note -f

bash -c 'greet' # success

Section 14.3: Handling flags and optional parameters

The getopts builtin can be used inside functions to write functions that accommodate flags and optional

parameters. This presents no special difficulty but one has to handle appropriately the values touched by getopts.

As an example, we define a failwith function that writes a message on stderr and exits with code 1 or an arbitrary code supplied as parameter to the -x option:

 # failwith [-x STATUS] PRINTF-LIKE-ARGV

 # Fail with the given diagnostic message

 #

 # The -x flag can be used to convey a custom exit status, instead of

 # the value 1. A newline is automatically added to the output.

failwith()

GoalKicker.com – Bash Notes for Professionals

53

{

local OPTIND OPTION OPTARG status

status=1

OPTIND=1

while getopts 'x:' OPTION; do

case ${OPTION} in

x) status="${OPTARG}" ;;

*) 1>& 2 printf 'failwith: %s: Unsupported option.\n' "${OPTION}" ;; esac

done

shift $((OPTIND - 1))

{

printf 'Failure: '

printf "$@"

printf '\n'

} 1>& 2

exit "${status}"

}

This function can be used as follows:

failwith '%s: File not found.' "${filename}"

failwith -x 70 'General internal error.'

and so on.

Note that as for printf, variables should not be used as first argument. If the message to print consists of the content of a variable, one should use the %s specifier to print it, like in

failwith '%s' "${message}"

Section 14.4: Print the function definition

getfunc() {

declare -f "$@"

}

function func(){

echo "I am a sample function"

}

funcd="$(getfunc func)"

getfunc func # or echo "$funcd"

Output:

func ()

{

echo "I am a sample function"

}

Section 14.5: A function that accepts named parameters

foo() {

while [["$#" -gt 0]]

GoalKicker.com – Bash Notes for Professionals

54

 do

case $1 in

-f|--follow)

local FOLLOW="following"

;;

-t|--tail)

local TAIL="tail=$2"

;;

esac

shift

done

echo "FOLLOW: $FOLLOW"

echo "TAIL: $TAIL"

}

Example usage:

foo -f

foo -t 10

foo -f --tail 10

foo --follow --tail 10

Section 14.6: Return value from a function

The return statement in Bash doesn't return a value like C-functions, instead it exits the function with a return status. You can think of it as the exit status of that function.

If you want to return a value from the function then send the value to stdout like this:

fun() {

local var="Sample value to be returned"

echo "$var"

 #printf "%s\n" "$var"

}

Now, if you do:

var="$(fun)"

the output of fun will be stored in $var.

Section 14.7: The exit code of a function is the exit code of its

last command

Consider this example function to check if a host is up:

is_alive() {

ping -c1 "$1" &> /dev/null

}

This function sends a single ping to the host specified by the first function parameter. The output and error output of ping are both redirected to /dev/null, so the function will never output anything. But the ping command will have exit code 0 on success, and non-zero on failure. As this is the last (and in this example, the only) command of the function, the exit code of ping will be reused for the exit code of the function itself.

GoalKicker.com – Bash Notes for Professionals

55

This fact is very useful in conditional statements.

For example, if host graucho is up, then connect to it with ssh:

if is_alive graucho; then

ssh graucho

fi

Another example: repeatedly check until host graucho is up, and then connect to it with ssh:

while ! is_alive graucho; do

sleep 5

done

ssh graucho

GoalKicker.com – Bash Notes for Professionals

56

Chapter 15: Bash Parameter Expansion

The $ character introduces parameter expansion, command substitution, or arithmetic expansion. The parameter

name or symbol to be expanded may be enclosed in braces, which are optional but serve to protect the variable to be expanded from characters immediately following it which could be interpreted as part of the name.

Read more in the Bash User Manual.

Section 15.1: Modifying the case of alphabetic characters

Version ≥ 4.0

To uppercase

$ v="hello"

 # Just the first character

$ printf '%s\n' "${v^}"

Hello

 # All characters

$ printf '%s\n' "${v^^}"

HELLO

 # Alternative

$ v="hello world"

$ declare -u string="$v"

$ echo "$string"

HELLO WORLD

To lowercase

$ v="BYE"

 # Just the first character

$ printf '%s\n' "${v,}"

bYE

 # All characters

$ printf '%s\n' "${v,,}"

bye

 # Alternative

$ v="HELLO WORLD"

$ declare -l string="$v"

$ echo "$string"

hello world

Toggle Case

$ v="Hello World"

 # All chars

$ echo "${v~~}"

hELLO wORLD

$ echo "${v~}"

 # Just the first char

hello World

Section 15.2: Length of parameter

 # Length of a string

$ var='12345'

$ echo "${#var}"

GoalKicker.com – Bash Notes for Professionals

57

5

Note that it's the length in number of characters which is not necessarily the same as the number of bytes (like in UTF-8 where most characters are encoded in more than one byte), nor the number of glyphs/graphemes (some of which are combinations of characters), nor is it necessarily the same as the display width.

 # Number of array elements

$ myarr=(1 2 3)

$ echo "${#myarr[@]}"

3

 # Works for positional parameters as well

$ set -- 1 2 3 4

$ echo "${#@}"

4

 # But more commonly (and portably to other shells), one would use

$ echo "$#"

4

Section 15.3: Replace pattern in string

First match:

$ a='I am a string'

$ echo "${a/a/A}"

I Am a string

All matches:

$ echo "${a//a/A}"

I Am A string

Match at the beginning:

$ echo "${a/#I/y}"

y am a string

Match at the end:

$ echo "${a/%g/N}"

I am a strinN

Replace a pattern with nothing:

$ echo "${a/g/}"

I am a strin

Add prefix to array items:

$ A=(hello world)

$ echo "${A[@]/#/R}"

Rhello Rworld

GoalKicker.com – Bash Notes for Professionals

58

Section 15.4: Substrings and subarrays

var='0123456789abcdef'

 # Define a zero-based offset

$ printf '%s\n' "${var:3}"

3456789abcdef

 # Offset and length of substring

$ printf '%s\n' "${var:3:4}"

3456

Version ≥ 4.2

 # Negative length counts from the end of the string

$ printf '%s\n' "${var:3:-5}"

3456789a

 # Negative offset counts from the end

 # Needs a space to avoid confusion with ${var:-6}

$ printf '%s\n' "${var: -6}"

abcdef

 # Alternative: parentheses

$ printf '%s\n' "${var:(-6)}"

abcdef

 # Negative offset and negative length

$ printf '%s\n' "${var: -6:-5}"

a

The same expansions apply if the parameter is a positional parameter or the element of a subscripted array:

 # Set positional parameter $1

set -- 0123456789abcdef

 # Define offset

$ printf '%s\n' "${1:5}"

56789abcdef

 # Assign to array element

myarr[0]='0123456789abcdef'

 # Define offset and length

$ printf '%s\n' "${myarr[0]:7:3}"

789

Analogous expansions apply to positional parameters, where offsets are one-based:

 # Set positional parameters $1, $2, ...

$ set -- 1 2 3 4 5 6 7 8 9 0 a b c d e f

 # Define an offset (beware $0 (not a positional parameter)

 # is being considered here as well)

$ printf '%s\n' "${@:10}"

0

a

b

c

d

e

f

GoalKicker.com – Bash Notes for Professionals

59

 # Define an offset and a length

$ printf '%s\n' "${@:10:3}"

0

a

b

 # No negative lengths allowed for positional parameters

$ printf '%s\n' "${@:10:-2}"

bash: -2: substring expression < 0

 # Negative offset counts from the end

 # Needs a space to avoid confusion with ${@:-10:2}

$ printf '%s\n' "${@: -10:2}"

7

8

 # ${@:0} is $0 which is not otherwise a positional parameters or part

 # of $@

$ printf '%s\n' "${@:0:2}"

/usr/bin/bash

1

Substring expansion can be used with indexed arrays:

 # Create array (zero-based indices)

$ myarr=(0 1 2 3 4 5 6 7 8 9 a b c d e f)

 # Elements with index 5 and higher

$ printf '%s\n' "${myarr[@]:12}"

c

d

e

f

 # 3 elements, starting with index 5

$ printf '%s\n' "${myarr[@]:5:3}"

5

6

7

 # The last element of the array

$ printf '%s\n' "${myarr[@]: -1}"

f

Section 15.5: Delete a pattern from the beginning of a string

Shortest match:

$ a='I am a string'

$ echo "${a#*a}"

m a string

Longest match:

$ echo "${a##*a}"

string

GoalKicker.com – Bash Notes for Professionals

60

Section 15.6: Parameter indirection

Bash indirection permits to get the value of a variable whose name is contained in another variable. Variables

example:

$ red="the color red"

$ green="the color green"

$ color=red

$ echo "${!color}"

the color red

$ color=green

$ echo "${!color}"

the color green

Some more examples that demonstrate the indirect expansion usage:

$ foo=10

$ x=foo

$ echo ${x} #Classic variable print

foo

$ foo=10

$ x=foo

$ echo ${!x} #Indirect expansion

10

One more example:

$ argtester () { for ((i=1; i< ="$#"; i++)); do echo "${i}"; done; }; argtester -ab -cd -ef 1 #i expanded to 1

2 #i expanded to 2

3 #i expanded to 3

$ argtester () { for ((i=1; i< ="$#"; i++)); do echo "${!i}"; done; }; argtester -ab -cd -ef

-ab # i=1 --> expanded to $1 ---> expanded to first argument sent to function

-cd # i=2 --> expanded to $2 ---> expanded to second argument sent to function

-ef # i=3 --> expanded to $3 ---> expanded to third argument sent to function

Section 15.7: Parameter expansion and filenames

You can use Bash Parameter Expansion to emulate common filename-processing operations like basename and

dirname.

We will use this as our example path:

FILENAME="/tmp/example/myfile.txt"

To emulate dirname and return the directory name of a file path:

echo "${FILENAME%/*}"

 #Out: /tmp/example

To emulate basename $FILENAME and return the filename of a file path:

echo "${FILENAME##*/}"

GoalKicker.com – Bash Notes for Professionals

61

 #Out: myfile.txt

To emulate basename $FILENAME .txt and return the filename without the .txt. extension:

BASENAME="${FILENAME##*/}"

echo "${BASENAME%%.txt}"

 #Out: myfile

Section 15.8: Default value substitution

${parameter:-word}

If parameter is unset or null, the expansion of word is substituted. Otherwise, the value of parameter is

substituted.

$ unset var

$ echo "${var:-XX}" # Parameter is unset -> expansion XX occurs

XX

$ var="" # Parameter is null -> expansion XX occurs

$ echo "${var:-XX}"

XX

$ var=23 # Parameter is not null -> original expansion occurs

$ echo "${var:-XX}"

23

${parameter:=word}

If parameter is unset or null, the expansion of word is assigned to parameter. The value of parameter is

then substituted. Positional parameters and special parameters may not be assigned to in this way.

$ unset var

$ echo "${var:=XX}" # Parameter is unset -> word is assigned to XX

XX

$ echo "$var"

XX

$ var="" # Parameter is null -> word is assigned to XX

$ echo "${var:=XX}"

XX

$ echo "$var"

XX

$ var=23 # Parameter is not null -> no assignment occurs

$ echo "${var:=XX}"

23

$ echo "$var"

23

Section 15.9: Delete a pattern from the end of a string

Shortest match:

$ a='I am a string'

$ echo "${a%a*}"

I am

Longest match:

GoalKicker.com – Bash Notes for Professionals

62

$ echo "${a%%a*}"

I

Section 15.10: Munging during expansion

Variables don't necessarily have to expand to their values - substrings can be extracted during expansion, which can be useful for extracting file extensions or parts of paths. Globbing characters keep their usual meanings, so .*

refers to a literal dot, followed by any sequence of characters; it's not a regular expression.

$ v=foo-bar-baz

$ echo ${v%%-*}

foo

$ echo ${v%-*}

foo-bar

$ echo ${v##*-}

baz

$ echo ${v#*-}

bar-baz

It's also possible to expand a variable using a default value - say I want to invoke the user's editor, but if they've not set one I'd like to give them vim.

$ EDITOR=nano

$ ${EDITOR:-vim} /tmp/some_file

 # opens nano

$ unset EDITOR

$ $ ${EDITOR:-vim} /tmp/some_file

 # opens vim

There are two different ways of performing this expansion, which differ in whether the relevant variable is empty or unset. Using :- will use the default if the variable is either unset or empty, whilst - only uses the default if the variable is unset, but will use the variable if it is set to the empty string:

$ a="set"

$ b=""

$ unset c

$ echo ${a:-default_a} ${b:-default_b} ${c:-default_c}

set default_b default_c

$ echo ${a-default_a} ${b-default_b} ${c-default_c}

set default_c

Similar to defaults, alternatives can be given; where a default is used if a particular variable isn't available, an alternative is used if the variable is available.

$ a="set"

$ b=""

$ echo ${a:+alternative_a} ${b:+alternative_b}

alternative_a

Noting that these expansions can be nested, using alternatives becomes particularly useful when supplying

arguments to command line flags;

$ output_file=/tmp/foo

$ wget ${output_file:+"-o ${output_file}"} www.stackexchange.com

expands to wget -o /tmp/foo www.stackexchange.com

$ unset output_file

GoalKicker.com – Bash Notes for Professionals

63

$ wget ${output_file:+"-o ${output_file}" } www.stackexchange.com

 # expands to wget www.stackexchange.com

Section 15.11: Error if variable is empty or unset

The semantics for this are similar to that of default value substitution, but instead of substituting a default value, it errors out with the provided error message. The forms are ${VARNAME?ERRMSG} and ${VARNAME:?ERRMSG}. The form

with : will error our if the variable is unset or empty, whereas the form without will only error out if the variable is unset. If an error is thrown, the ERRMSG is output and the exit code is set to 1.

 #!/bin/bash

FOO=

 # ./script.sh: line 4: FOO: EMPTY

echo "FOO is ${FOO:?EMPTY}"

 # FOO is

echo "FOO is ${FOO?UNSET}"

 # ./script.sh: line 8: BAR: EMPTY

echo "BAR is ${BAR:?EMPTY}"

 # ./script.sh: line 10: BAR: UNSET

echo "BAR is ${BAR?UNSET}"

The run the full example above each of the erroring echo statements needs to be commented out to proceed.

GoalKicker.com – Bash Notes for Professionals

64

Chapter 16: Copying (cp)

Option

Description

-a,-archive

Combines the d, p and r options

-b, -backup

Before removal, makes a backup

-d, --no-deference Preserves links

-f, --force

Remove existing destinations without prompting user

-i, --interactive Show prompt before overwriting

-l, --link

Instead of copying, link files instead

-p, --preserve

Preserve file attributes when possible

-R, --recursive

Recursively copy directories

Section 16.1: Copy a single file

Copy foo.txt from /path/to/source/ to /path/to/target/folder/

cp /path/to/source/foo.txt /path/to/target/folder/

Copy foo.txt from /path/to/source/ to /path/to/target/folder/ into a file called bar.txt cp /path/to/source/foo.txt /path/to/target/folder/bar.txt Section 16.2: Copy folders

copy folder foo into folder bar

cp -r /path/to/foo /path/to/bar

if folder bar exists before issuing the command, then foo and its content will be copied into the folder bar.

However, if bar does not exist before issuing the command, then the folder bar will be created and the content of foo will be placed into bar

GoalKicker.com – Bash Notes for Professionals

65

Chapter 17: Find

find is a command to recursively search a directory for files(or directories) that match a criteria, and then perform some action on the selected files.

find search_path selection_criteria action

Section 17.1: Searching for a file by name or extension

To find files/directories with a specific name, relative to pwd:

$ find . -name "myFile.txt"

. /myFile.txt

To find files/directories with a specific extension, use a wildcard:

$ find . -name "*.txt"

. /myFile.txt

. /myFile2.txt

To find files/directories matching one of many extensions, use the or flag:

$ find . -name "*.txt" -o -name "*.sh"

To find files/directories which name begin with abc and end with one alpha character following a one digit:

$ find . -name "abc[a-z][0-9]"

To find all files/directories located in a specific directory

$ find /opt

To search for files only (not directories), use -type f:

find /opt -type f

To search for directories only (not regular files), use -type d:

find /opt -type d

Section 17.2: Executing commands against a found file

Sometimes we will need to run commands against a lot of files. This can be done using xargs.

find . -type d -print | xargs -r chmod 770

The above command will recursively find all directories (-type d) relative to . (which is your current working

directory), and execute chmod 770 on them. The -r option specifies to xargs to not run chmod if find did not find any files.

If your files names or directories have a space character in them, this command may choke; a solution is to use the following

GoalKicker.com – Bash Notes for Professionals

66

find . -type d -print0 | xargs -r -0 chmod 770

In the above example, the -print0 and -0 flags specify that the file names will be separated using a null byte, and allows the use of special characters, like spaces, in the file names. This is a GNU extension, and may not work in other versions of find and xargs.

The preferred way to do this is to skip the xargs command and let find call the subprocess itself: find . -type d -exec chmod 770 {} \;

Here, the {} is a placeholder indicating that you want to use the file name at that point. find will execute chmod on each file individually.

You can alternatively pass all file names to a single call of chmod, by using

find . -type d -exec chmod 770 {} +

This is also the behaviour of the above xargs snippets. (To call on each file individually, you can use xargs -n1).

A third option is to let bash loop over the list of filenames find outputs:

find . -type d | while read -r d; do chmod 770 "$d"; done This is syntactically the most clunky, but convenient when you want to run multiple commands on each found file.

However, this is unsafe in the face of file names with odd names.

find . -type f | while read -r d; do mv "$d" "${d// /_}"; done which will replace all spaces in file names with underscores.(This example also won't work if there are spaces in leading directory names.)

The problem with the above is that while read -r expects one entry per line, but file names can contain newlines (and also, read -r will lose any trailing whitespace). You can fix this by turning things around:

find . -type d -exec bash -c 'for f; do mv "$f" "${f// /_}"; done' _ {} +

This way, the -exec receives the file names in a form which is completely correct and portable; the bash -c receives

them as a number of arguments, which will be found in $@, correctly quoted etc. (The script will need to handle

these names correctly, of course; every variable which contains a file name needs to be in double quotes.)

The mysterious _ is necessary because the first argument to bash -c 'script' is used to populate $0.

Section 17.3: Finding file by access / modification time

On an ext filesystem, each file has a stored Access, Modification, and (Status) Change time associated with it - to view this information you can use stat myFile.txt; using flags within find, we can search for files that were modified within a certain time range.

To find files that have been modified within the last 2 hours:

$ find . -mmin -120

GoalKicker.com – Bash Notes for Professionals

67

To find files that have not been modified within the last 2 hours:

$ find . -mmin +120

The above example are searching only on the modified time - to search on access times, or changed times, use a, or c accordingly.

$ find . -amin -120

$ find . -cmin +120

General format:

-mmin n : File was modified n minutes ago

-mmin -n : File was modified less than n minutes ago

-mmin +n : File was modified more than n minutes ago

Find files that have been modified within the last 2 days:

find . -mtime -2

Find files that have not been modified within the last 2 days

find . -mtime +2

Use -atime and -ctime for access time and status change time respectively.

General format:

-mtime n : File was modified nx24 hours ago

-mtime -n : File was modified less than nx24 hours ago

-mtime +n : File was modified more than nx24 hours ago

Find files modified in a range of dates, from 2007-06-07 to 2007-06-08:

find . -type f -newermt 2007-06-07 ! -newermt 2007-06-08

Find files accessed in a range of timestamps (using files as timestamp), from 1 hour ago to 10 minutes ago: touch -t $(date -d '1 HOUR AGO' +%Y%m%d%H%M. %S) start_date touch -t $(date -d '10 MINUTE AGO' +%Y%m%d%H%M. %S) end_date timeout 10 find "$LOCAL_FOLDER" -newerat "start_date" ! -newerat "end_date" -print General format:

-newerXY reference : Compares the timestamp of the current file with reference. XY could have one of the

following values: at (access time), mt (modification time), ct (change time) and more. reference is the name of a file whe want to compare the timestamp specified (access, modification, change) or a string describing an absolute time.

Section 17.4: Finding files according to size

 Find files larger than 15MB:

GoalKicker.com – Bash Notes for Professionals

68

find -type f -size +15M

 Find files less than 12KB:

find -type f -size -12k

 Find files exactly of 12KB size:

find -type f -size 12k

Or

find -type f -size 12288c

Or

find -type f -size 24b

Or

find -type f -size 24

General format:

find [options] -size n[cwbkMG]

Find files of n-block size, where +n means more than n-block, -n means less than n-block and n (without

any sign) means exactly n-block

 Block size:

1. c: bytes

2. w: 2 bytes

3. b: 512 bytes (default)

4. k: 1 KB

5. M: 1 MB

6. G: 1 GB

Section 17.5: Filter the path

The -path parameter allows to specify a pattern to match the path of the result. The pattern can match also the

name itself.

To find only files containing log anywhere in their path (folder or name):

find . -type f -path '*log*'

To find only files within a folder called log (on any level):

find . -type f -path '*/log/*'

To find only files within a folder called log or data:

GoalKicker.com – Bash Notes for Professionals

69

find . -type f -path '*/log/*' -o -path '*/data/*'

To find all files except the ones contained in a folder called bin:

find . -type f -not -path '*/bin/*'

To find all file all files except the ones contained in a folder called bin or log files:

find . -type f -not -path '*log' -not -path '*/bin/*'

Section 17.6: Finding files by type

To find files, use the -type f flag

$ find . -type f

To find directories, use the -type d flag

$ find . -type d

To find block devices, use the -type b flag

$ find /dev -type b

To find symlinks, use the -type l flag

$ find . -type l

Section 17.7: Finding files by specific extension

To find all the files of a certain extension within the current path you can use the following find syntax. It works by making use of bash's built-in glob construct to match all the names having the .extension.

find /directory/to/search -maxdepth 1 -type f -name "*.extension"

To find all files of type .txt from the current directory alone, do

find . -maxdepth 1 -type f -name "*.txt"

GoalKicker.com – Bash Notes for Professionals

70

Chapter 18: Using sort

Option

Meaning

-u

Make each lines of output unique

sort is a Unix command to order data in file(s) in a sequence.

Section 18.1: Sort command output

sort command is used to sort a list of lines.

Input from a file

sort file.txt

Input from a command

You can sort any output command. In the example a list of file following a pattern.

find * -name pattern | sort

Section 18.2: Make output unique

If each lines of the output need to be unique, add -u option.

To display owner of files in folder

ls -l | awk '{print $3}' | sort -u

Section 18.3: Numeric sort

Suppose we have this file:

test>>cat file

10.Gryffindor

4.Hogwarts

2.Harry

3.Dumbledore

1.The sorting hat

To sort this file numerically, use sort with -n option:

test>>sort -n file

This should sort the file as below:

1.The sorting hat

2.Harry

3.Dumbledore

4.Hogwarts

10.Gryffindor

Reversing sort order: To reverse the order of the sort use the -r option

GoalKicker.com – Bash Notes for Professionals

71

To reverse the sort order of the above file use:

sort -rn file

This should sort the file as below:

10.Gryffindor

4.Hogwarts

3.Dumbledore

2.Harry

1.The sorting hat

Section 18.4: Sort by keys

Suppose we have this file:

test>>cat Hogwarts

Harry Malfoy Rowena Helga

Gryffindor Slytherin Ravenclaw Hufflepuff

Hermione Goyle Lockhart Tonks

Ron Snape Olivander Newt

Ron Goyle Flitwick Sprout

To sort this file using a column as key use the k option:

test>>sort -k 2 Hogwarts

This will sort the file with column 2 as the key:

Ron Goyle Flitwick Sprout

Hermione Goyle Lockhart Tonks

Harry Malfoy Rowena Helga

Gryffindor Slytherin Ravenclaw Hufflepuff

Ron Snape Olivander Newt

Now if we have to sort the file with a secondary key along with the primary key use:

sort -k 2,2 -k 1,1 Hogwarts

This will first sort the file with column 2 as primary key, and then sort the file with column 1 as secondary key: Hermione Goyle Lockhart Tonks

Ron Goyle Flitwick Sprout

Harry Malfoy Rowena Helga

Gryffindor Slytherin Ravenclaw Hufflepuff

Ron Snape Olivander Newt

If we need to sort a file with more than 1 key , then for every -k option we need to specify where the sort ends. So -

k1,1 means start the sort at the first column and end sort at first column.

-t option

In the previous example the file had the default delimeter - tab. In case of sorting a file that has non-default delimeter we need the -t option to specify the delimeter. Suppose we have the file as below:

test>>cat file

GoalKicker.com – Bash Notes for Professionals

72

5. |Gryffindor

4. |Hogwarts

2. |Harry

3. |Dumbledore

1. |The sorting hat

To sort this file as per the second column, use:

test>>sort -t "|" -k 2 file

This will sort the file as below:

3. |Dumbledore

5. |Gryffindor

2. |Harry

4. |Hogwarts

1. |The sorting hat

GoalKicker.com – Bash Notes for Professionals

73

Chapter 19: Sourcing

Section 19.1: Sourcing a file

Sourcing a file is different from execution, in that all commands are evaluated within the context of the current bash session - this means that any variables, function, or aliases defined will persist throughout your session.

Create the file you wish to source sourceme.sh

 #!/bin/bash

export A="hello_world"

alias sayHi="echo Hi"

sayHello() {

echo Hello

}

From your session, source the file

$ source sourceme.sh

From hencefourth, you have all the resources of the sourced file available

$ echo $A

hello_world

$ sayHi

Hi

$ sayHello

Hello

Note that the command . is synonymous to source, such that you can simply use

$. sourceme.sh

Section 19.2: Sourcing a virtual environment

When developing several applications on one machine, it becomes useful to separate out dependencies into virtual environments.

With the use of virtualenv, these environments are sourced into your shell so that when you run a command, it comes from that virtual environment.

This is most commonly installed using pip.

pip install https://github.com/pypa/virtualenv/tarball/15.0.2

Create a new environment

virtualenv --python=python3.5 my_env

Activate the environment

GoalKicker.com – Bash Notes for Professionals

74

source my_env/bin/activate

GoalKicker.com – Bash Notes for Professionals

75

Chapter 20: Here documents and here

strings

Section 20.1: Execute command with here document

ssh -p 21 example@example.com <<EOF

 echo 'printing pwd'

 echo "\$(pwd)"

 ls -a

 find '*.txt'

 EOF

$ is escaped because we do not want it to be expanded by the current shell i.e $(pwd) is to be executed on the remote shell.

Another way:

ssh -p 21 example@example.com <<'EOF'

 echo 'printing pwd'

 echo "$(pwd)"

 ls -a

 find '*.txt'

 EOF

 Note: The closing EOF should be at the beginning of the line (No whitespaces before). If indentation is required, tabs may be used if you start your heredoc with <<-. See the Indenting here documents and Limit Strings examples for more information.

Section 20.2: Indenting here documents

You can indent the text inside here documents with tabs, you need to use the <<- redirection operator instead of

<<:

$ cat <<- EOF

 This is some content indented with tabs `\t`.

 You cannot indent with spaces you __have__ to use tabs.

 Bash will remove empty space before these lines.

 __Note__: Be sure to replace spaces with tabs when copying this example.

 EOF

This is some content indented with tabs _\t_.

You cannot indent with spaces you __have__ to use tabs.

Bash will remove empty space before these lines.

__Note__: Be sure to replace spaces with tabs when copying this example.

One practical use case of this (as mentioned in man bash) is in shell scripts, for example:

if cond; then

cat << - EOF

hello

there

EOF

fi

It is customary to indent the lines within code blocks as in this if statement, for better readability. Without the <<-

GoalKicker.com – Bash Notes for Professionals

76

operator syntax, we would be forced to write the above code like this:

if cond; then

cat << EOF

 hello

 there

 EOF

fi

That's very unpleasant to read, and it gets much worse in a more complex realistic script.

Section 20.3: Create a file

A classic use of here documents is to create a file by typing its content:

cat > fruits.txt << EOF

 apple

 orange

 lemon

 EOF

The here-document is the lines between the << EOF and EOF.

This here document becomes the input of the cat command. The cat command simply outputs its input, and using the output redirection operator > we redirect to a file fruits.txt.

As a result, the fruits.txt file will contain the lines:

apple

orange

lemon

The usual rules of output redirection apply: if fruits.txt did not exist before, it will be created. If it existed before, it will be truncated.

Section 20.4: Here strings

Version ≥ 2.05b

You can feed a command using here strings like this:

$ awk '{print $2}' <<< "hello world - how are you?"

world

$ awk '{print $1}' <<< "hello how are you

> she is fine"

hello

she

You can also feed a while loop with a here string:

$ while IFS=" " read -r word1 word2 rest

> do

> echo "$word1"

> done <<< "hello how are you - i am fine"

hello

GoalKicker.com – Bash Notes for Professionals

77

Section 20.5: Run several commands with sudo

sudo -s <<EOF

 a='var'

 echo 'Running serveral commands with sudo'

 mktemp -d

 echo "\$a"

 EOF

$a needs to be escaped to prevent it to be expanded by the current shell

Or

sudo -s <<'EOF'

 a='var'

 echo 'Running serveral commands with sudo'

 mktemp -d

 echo "$a"

 EOF

Section 20.6: Limit Strings

A heredoc uses the limitstring to determine when to stop consuming input. The terminating limitstring must Be at the start of a line.

Be the only text on the line Note: If you use <<- the limitstring can be prefixed with tabs \t

Correct:

cat <<limitstring

 line 1

 line 2

 limitstring

This will output:

line 1

line 2

Incorrect use:

cat << limitstring

line 1

line 2

limitstring

Since limitstring on the last line is not exactly at the start of the line, the shell will continue to wait for further input, until it sees a line that starts with limitstring and doesn't contain anything else. Only then it will stop waiting for input, and proceed to pass the here-document to the cat command.

Note that when you prefix the initial limitstring with a hyphen, any tabs at the start of the line are removed before parsing, so the data and the limit string can be indented with tabs (for ease of reading in shell scripts).

cat << -limitstring

line 1 has a tab each before the words line and has

line 2 has two leading tabs

GoalKicker.com – Bash Notes for Professionals

78

 limitstring

will produce

line 1 has a tab each before the words line and has

line 2 has two leading tabs

with the leading tabs (but not the internal tabs) removed.

GoalKicker.com – Bash Notes for Professionals

79

Chapter 21: Quoting

Section 21.1: Double quotes for variable and command

substitution

Variable substitutions should only be used inside double quotes.

calculation='2 * 3'

echo "$calculation" # prints 2 * 3

echo $calculation # prints 2, the list of files in the current directory, and 3

echo "$(($calculation))" # prints 6

Outside of double quotes, $var takes the value of var, splits it into whitespace-delimited parts, and interprets each part as a glob (wildcard) pattern. Unless you want this behavior, always put $var inside double quotes: "$var".

The same applies to command substitutions: "$(mycommand)" is the output of mycommand, $(mycommand) is the result of split+glob on the output.

echo "$var" # good

echo "$(mycommand)" # good

another=$var # also works, assignment is implicitly double-quoted

make -D THING=$var # BAD! This is not a bash assignment.

make -D THING="$var" # good

make -D "THING=$var" # also good

Command substitutions get their own quoting contexts. Writing arbitrarily nested substitutions is easy because the parser will keep track of nesting depth instead of greedily searching for the first " character. The StackOverflow syntax highlighter parses this wrong, however. For example:

echo "formatted text: $(printf "a + b = %04d" "${c}")" # “formatted text: a + b = 0000”

Variable arguments to a command substitution should be double-quoted inside the expansions as well:

echo "$(mycommand "$arg1" "$arg2")"

Section 21.2: Dierence between double quote and single

quote

Double quote

Single quote

Allows variable expansion

Prevents variable expansion

Allows history expansion if enabled

Prevents history expansion

Allows command substitution

Prevents command substitution

* and @ can have special meaning

* and @ are always literals

Can contain both single quote or double quote

Single quote is not allowed inside single quote

$, `, ", \ can be escaped with \ to prevent their special meaning All of them are literals

Properties that are common to both:

Prevents globbing

Prevents word splitting

Examples:

GoalKicker.com – Bash Notes for Professionals

80

$ echo "!cat"

echo "cat file"

cat file

$ echo '!cat'

!cat

echo " \" ' \" "

"'"

$ a='var'

$ echo '$a'

$a

$ echo "$a"

var

Section 21.3: Newlines and control characters

A newline can be included in a single-quoted string or double-quoted string. Note that backslash-newline does not result in a newline, the line break is ignored.

newline1='

'

newline2="

"

newline3=$'\n'

empty=\

echo "Line${newline1}break"

echo "Line${newline2}break"

echo "Line${newline3}break"

echo "No line break${empty} here"

Inside dollar-quote strings, backslash-letter or backslash-octal can be used to insert control characters, like in many other programming languages.

echo $'Tab: [\t]'

echo $'Tab again: [\009]'

echo $'Form feed: [\f]'

echo $'Line\nbreak'

Section 21.4: Quoting literal text

All the examples in this paragraph print the line

! "#$&'()*;<=>? @[\]^`{|}~

A backslash quotes the next character, i.e. the next character is interpreted literally. The one exception is a newline: backslash-newline expands to the empty string.

echo \!\" \ #\$\&\'\(\)*\;\<\=\>\?\ \ \@\[\\\]\^\`\{\|\}\~

All text between single quotes (forward quotes ', also known as apostrophe) is printed literally. Even backslash stands for itself, and it's impossible to include a single quote; instead, you can stop the literal string, include a literal single quote with a backslash, and start the literal string again. Thus the 4-character sequence '\'' effectively allow to include a single quote in a literal string.

echo '!"#$&' \' '()*;<=>? @[\]^`{|}~'

GoalKicker.com – Bash Notes for Professionals

81

 # ^^^^

Dollar-single-quote starts a string literal $'…' like many other programming languages, where backslash quotes

the next character.

echo $'!"#$&\' ()*; < => ? @[\\]^`{|}~'

^^ ^^

Double quotes " delimit semi-literal strings where only the characters " \ $ and ` retain their special meaning.

These characters need a backslash before them (note that if backslash is followed by some other character, the

backslash remains). Double quotes are mostly useful when including a variable or a command substitution.

echo "! \" #\$&'()*;<=>? @[\\]^\`{|}~"

^^ ^^ ^^

echo "!\"#\$&'()*;<=>? @[\]^\`{|}~"

 # ^^ ^ ^^ \[prints \[

Interactively, beware that ! triggers history expansion inside double quotes: "!oops" looks for an older command containing oops; "\!oops" doesn't do history expansion but keeps the backslash. This does not happen in scripts.

GoalKicker.com – Bash Notes for Professionals

82

Chapter 22: Conditional Expressions

Section 22.1: File type tests

The -e conditional operator tests whether a file exists (including all file types: directories, etc.).

if [[-e $filename]]; then

echo "$filename exists"

fi

There are tests for specific file types as well.

if [[-f $filename]]; then

echo "$filename is a regular file"

elif [[-d $filename]]; then

echo "$filename is a directory"

elif [[-p $filename]]; then

echo "$filename is a named pipe"

elif [[-S $filename]]; then

echo "$filename is a named socket"

elif [[-b $filename]]; then

echo "$filename is a block device"

elif [[-c $filename]]; then

echo "$filename is a character device"

fi

if [[-L $filename]]; then

echo "$filename is a symbolic link (to any file type)"

fi

For a symbolic link, apart from -L, these tests apply to the target, and return false for a broken link.

if [[-L $filename || -e $filename]]; then

echo "$filename exists (but may be a broken symbolic link)"

fi

if [[-L $filename && ! -e $filename]]; then

echo "$filename is a broken symbolic link"

fi

Section 22.2: String comparison and matching

String comparison uses the == operator between quoted strings. The != operator negates the comparison.

if [["$string1" == "$string2"]]; then

echo " \$string1 and \$string2 are identical"

fi

if [["$string1" ! = "$string2"]]; then

echo " \$string1 and \$string2 are not identical"

fi

If the right-hand side is not quoted then it is a wildcard pattern that $string1 is matched against.

string='abc'

pattern1='a*'

pattern2='x*'

if [["$string" == $pattern1]]; then

 # the test is true

GoalKicker.com – Bash Notes for Professionals

83

 echo "The string $string matches the pattern $pattern"

fi

if [["$string" ! = $pattern2]]; then

 # the test is false

echo "The string $string does not match the pattern $pattern"

fi

The < and > operators compare the strings in lexicographic order (there are no less-or-equal or greater-or-equal operators for strings).

There are unary tests for the empty string.

if [[-n "$string"]]; then

echo "$string is non-empty"

fi

if [[-z "${string// }"]]; then

echo "$string is empty or contains only spaces"

fi

if [[-z "$string"]]; then

echo "$string is empty"

fi

Above, the -z check may mean $string is unset, or it is set to an empty string. To distinguish between empty and unset, use:

if [[-n "${string+x}"]]; then

echo "$string is set, possibly to the empty string"

fi

if [[-n "${string-x}"]]; then

echo "$string is either unset or set to a non-empty string"

fi

if [[-z "${string+x}"]]; then

echo "$string is unset"

fi

if [[-z "${string-x}"]]; then

echo "$string is set to an empty string"

fi

where x is arbitrary. Or in table form:

+-------+-------+-----------+

$string is: | unset | empty | non-empty |

+-----------------------+-------+-------+-----------+

| [[-z ${string}]] | true | true | false |

| [[-z ${string+x}]] | true | false | false |

| [[-z ${string-x}]] | false | true | false |

| [[-n ${string}]] | false | false | true |

| [[-n ${string+x}]] | false | true | true |

| [[-n ${string-x}]] | true | false | true |

+-----------------------+-------+-------+-----------+

Alternatively, the state can be checked in a case statement:

case ${var+x$var} in

(x) echo empty;;

("") echo unset;;

(x*[![:blank:]]*) echo non-blank;;

(*) echo blank

GoalKicker.com – Bash Notes for Professionals

84

esac

Where [:blank:] is locale specific horizontal spacing characters (tab, space, etc).

Section 22.3: Test on exit status of a command

Exit status 0: success

Exit status other than 0: failure

To test on the exit status of a command:

if command; then

echo 'success'

else

echo 'failure'

fi

Section 22.4: One liner test

You can do things like this:

[[$s = 'something']] && echo 'matched' || echo "didn't match"

[[$s == 'something']] && echo 'matched' || echo "didn't match"

[[$s ! = 'something']] && echo "didn't match" || echo "matched"

[[$s -eq 10]] && echo 'equal' || echo "not equal"

(($s == 10)) && echo 'equal' || echo 'not equal'

One liner test for exit status:

command && echo 'exited with 0' || echo 'non 0 exit'

cmd && cmd1 && echo 'previous cmds were successful' || echo 'one of them failed'

cmd || cmd1 #If cmd fails try cmd1

Section 22.5: File comparison

if [[$file1 -ef $file2]]; then

echo "$file1 and $file2 are the same file"

fi

“Same file” means that modifying one of the files in place affects the other. Two files can be the same even if they have different names, for example if they are hard links, or if they are symbolic links with the same target, or if one is a symbolic link pointing to the other.

If two files have the same content, but they are distinct files (so that modifying one does not affect the other), then

-ef reports them as different. If you want to compare two files byte by byte, use the cmp utility.

if cmp -s -- "$file1" "$file2"; then

echo "$file1 and $file2 have identical contents"

else

echo "$file1 and $file2 differ"

fi

To produce a human-readable list of differences between text files, use the diff utility.

if diff -u "$file1" "$file2"; then

GoalKicker.com – Bash Notes for Professionals

85

 echo "$file1 and $file2 have identical contents"

else

: # the differences between the files have been listed

fi

Section 22.6: File access tests

if [[-r $filename]]; then

echo "$filename is a readable file"

fi

if [[-w $filename]]; then

echo "$filename is a writable file"

fi

if [[-x $filename]]; then

echo "$filename is an executable file"

fi

These tests take permissions and ownership into account to determine whether the script (or programs launched

from the script) can access the file.

Beware of race conditions (TOCTOU): just because the test succeeds now doesn't mean that it's still valid on the next line. It's usually better to try to access a file, and handle the error, rather than test first and then have to handle the error anyway in case the file has changed in the meantime.

Section 22.7: Numerical comparisons

Numerical comparisons use the -eq operators and friends

if [[$num1 -eq $num2]]; then

echo "$num1 == $num2"

fi

if [[$num1 -le $num2]]; then

echo "$num1 <= $num2"

fi

There are six numeric operators:

-eq equal

-ne not equal

-le less or equal

-lt less than

-ge greater or equal

-gt greater than

Note that the < and > operators inside [[…]] compare strings, not numbers.

if [[9 -lt 10]]; then

echo "9 is before 10 in numeric order"

fi

if [[9 > 10]]; then

echo "9 is after 10 in lexicographic order"

fi

The two sides must be numbers written in decimal (or in octal with a leading zero). Alternatively, use the ((…)) arithmetic expression syntax, which performs integer calculations in a C/Java/…-like syntax.

GoalKicker.com – Bash Notes for Professionals

86

x=2

if ((2*x == 4)); then

echo "2 times 2 is 4"

fi

((x += 1))

echo "2 plus 1 is $x"

GoalKicker.com – Bash Notes for Professionals

87

Chapter 23: Scripting with Parameters

Section 23.1: Multiple Parameter Parsing

To parse lots of parameters, the preferred way of doing this is using a while loop, a case statement, and shift.

shift is used to pop the first parameter in the series, making what used to be $2, now be $1. This is useful for processing arguments one at a time.

 #!/bin/bash

 # Load the user defined parameters

while [[$# > 0]]

do

case "$1" in

-a|--valueA)

valA="$2"

shift

;;

-b|--valueB)

valB="$2"

shift

;;

--help|*)

echo "Usage:"

echo " --valueA \" value\" "

echo " --valueB \" value\" "

echo " --help"

exit 1

;;

esac

shift

done

echo "A: $valA"

echo "B: $valB"

Inputs and Outputs

$. /multipleParams.sh --help

Usage:

--valueA "value"

--valueB "value"

--help

$. /multipleParams.sh

A:

B:

$. /multipleParams.sh --valueB 2

A:

B: 2

$. /multipleParams.sh --valueB 2 --valueA "hello world"

A: hello world

GoalKicker.com – Bash Notes for Professionals

88

B: 2

Section 23.2: Argument parsing using a for loop

A simple example which provides the options:

Opt

Alt. Opt

Details

-h

--help

Show help

-v

--version

Show version info

-dr path --doc-root path An option which takes a secondary parameter (a path)

-i

--install

A boolean option (true/false)

-*

--

Invalid option

 #!/bin/bash

dr=''

install=false

skip=false

for op in "$@"; do

if $skip; then skip=false; continue; fi

case "$op" in

-v|--version)

echo "$ver_info"

shift

exit 0

;;

-h|--help)

echo "$help"

shift

exit 0

;;

-dr|--doc-root)

shift

if [["$1" ! = ""]]; then

dr="${1/%\//}"

shift

skip=true

else

echo "E: Arg missing for -dr option"

exit 1

fi

;;

-i|--install)

install=true

shift

;;

-*)

echo "E: Invalid option: $1"

shift

exit 1

;;

esac

done

Section 23.3: Wrapper script

Wrapper script is a script that wraps another script or command to provide extra functionalities or just to make something less tedious.

GoalKicker.com – Bash Notes for Professionals

89

For example, the actual egrep in new GNU/Linux system is being replaced by a wrapper script named egrep. This is how it looks:

 #!/bin/sh

exec grep -E "$@"

So, when you run egrep in such systems, you are actually running grep -E with all the arguments forwarded.

In general case, if you want to run an example script/command exmp with another script mexmp then the wrapper

mexmp script will look like:

 #!/bin/sh

exmp "$@" # Add other options before "$@"

 # or

 #full/path/to/exmp "$@"

Section 23.4: Accessing Parameters

When executing a Bash script, parameters passed into the script are named in accordance to their position: $1 is the name of the first parameter, $2 is the name of the second parameter, and so on.

A missing parameter simply evaluates to an empty string. Checking for the existence of a parameter can be done as follows:

if [-z "$1"]; then

echo "No argument supplied"

fi

Getting all the parameters

$@ and $* are ways of interacting with all the script parameters. Referencing the Bash man page, we see that:

$*: Expands to the positional parameters, starting from one. When the expansion occurs within double

quotes, it expands to a single word with the value of each parameter separated by the first character of the

IFS special variable.

$@: Expands to the positional parameters, starting from one. When the expansion occurs within double

quotes, each parameter expands to a separate word.

Getting the number of parameters

$# gets the number of parameters passed into a script. A typical use case would be to check if the appropriate

number of arguments are passed:

if [$# -eq 0]; then

echo "No arguments supplied"

fi

Example 1

Loop through all arguments and check if they are files:

for item in "$@"

do

if [[-f $item]]; then

echo "$item is a file"

GoalKicker.com – Bash Notes for Professionals

90

 fi

done

Example 2

Loop through all arguments and check if they are files:

for ((i = 1; i < = $#; ++ i))

do

item=${@:$i:1}

if [[-f $item]]; then

echo "$item is a file"

fi

done

Section 23.5: Split string into an array in Bash

Let's say we have a String parameter and we want to split it by comma

my_param="foo,bar,bash"

To split this string by comma we can use;

IFS=',' read -r -a array <<< "$my_param"

Here, IFS is a special variable called Internal field separator which defines the character or characters used to

separate a pattern into tokens for some operations.

To access an individual element:

echo "${array[0]}"

To iterate over the elements:

for element in "${array[@]}"

do

echo "$element"

done

To get both the index and the value:

for index in "${!array[@]}"

do

echo "$index ${array[index]}"

done

GoalKicker.com – Bash Notes for Professionals

91

Chapter 24: Bash history substitutions

Section 24.1: Quick Reference

Interaction with the history

 # List all previous commands

history

 # Clear the history, useful if you entered a password by accident

history -c

Event designators

 # Expands to line n of bash history

! n

 # Expands to last command

!!

 # Expands to last command starting with "text"

! text

 # Expands to last command containing "text"

! ?text

 # Expands to command n lines ago

! -n

 # Expands to last command with first occurrence of "foo" replaced by "bar"

^foo^bar^

 # Expands to the current command

! #

Word designators

These are separated by : from the event designator they refer to. The colon can be omitted if the word designator doesn't start with a number: !^ is the same as ! :^.

 # Expands to the first argument of the most recent command

! ^

 # Expands to the last argument of the most recent command (short for !!:$)

! $

 # Expands to the third argument of the most recent command

! :3

 # Expands to arguments x through y (inclusive) of the last command

 # x and y can be numbers or the anchor characters ^ $

! :x-y

 # Expands to all words of the last command except the 0th

 # Equivalent to :^-$

!*

Modifiers

These modify the preceding event or word designator.

 # Replacement in the expansion using sed syntax

GoalKicker.com – Bash Notes for Professionals

92

 # Allows flags before the s and alternate separators

:s/foo/bar/ #substitutes bar for first occurrence of foo

:gs|foo|bar| #substitutes bar for all foo

 # Remove leading path from last argument ("tail")

:t

 # Remove trailing path from last argument ("head")

:h

 # Remove file extension from last argument

:r

If the Bash variable HISTCONTROL contains either ignorespace or ignoreboth (or, alternatively, HISTIGNORE contains the pattern []*), you can prevent your commands from being stored in Bash history by prepending them with a space:

 # This command won't be saved in the history

foo

 # This command will be saved

bar

Section 24.2: Repeat previous command with sudo

$ apt-get install r-base

E: Could not open lock file /var/lib/dpkg/lock - open (13: Permission denied) E: Unable to lock the administration directory (/var/lib/dpkg/), are you root?

$ sudo !!

sudo apt-get install r-base

[sudo] password for < user> :

Section 24.3: Search in the command history by pattern

Press control r and type a pattern.

For example, if you recently executed man 5 crontab, you can find it quickly by starting to type "crontab". The prompt will change like this:

(reverse-i-search)`cr': man 5 crontab

The `cr' there is the string I typed so far. This is an incremental search, so as you continue typing, the search result gets updated to match the most recent command that contained the pattern.

Press the left or right arrow keys to edit the matched command before running it, or the enter key to run the

command.

By default the search finds the most recently executed command matching the pattern. To go further back in the

history press control r again. You may press it repeatedly until you find the desired command.

Section 24.4: Switch to newly created directory with !#:N

$ mkdir backup_download_directory && cd ! #:1

mkdir backup_download_directory && cd backup_download_directory

This will substitute the Nth argument of the current command. In the example ! #:1 is replaced with the first

GoalKicker.com – Bash Notes for Professionals

93

argument, i.e. backup_download_directory.

Section 24.5: Using !$

You can use the !$ to reduce repetition when using the command line:

$ echo ping

ping

$ echo ! $

ping

You can also build upon the repetition

$ echo ! $ pong

ping pong

$ echo ! $, a great game

pong, a great game

Notice that in the last example we did not get ping pong, a great game because the last argument passed to the previous command was pong, we can avoid issue like this by adding quotes. Continuing with the example, our last

argument was game:

$ echo "it is !$ time"

it is game time

$ echo "hooray, !$!"

hooray, it is game time!

Section 24.6: Repeat the previous command with a

substitution

$ mplayer Lecture_video_part1.mkv

$ ^1^2^

mplayer Lecture_video_part2.mkv

This command will replace 1 with 2 in the previously executed command. It will only replace the first occurrence of the string and is equivalent to !! :s/1/2/.

If you want to replace all occurrences, you have to use !! :gs/1/2/ or !! :as/1/2/.

GoalKicker.com – Bash Notes for Professionals

94

Chapter 25: Math

Section 25.1: Math using dc

dc is one of the oldest programs on Unix.

It uses reverse polish notation, which means that you first stack numbers, then operations. For example 1+1 is written as 1 1+.

To print an element from the top of the stack use command p

echo '2 3 + p' | dc

5

or

dc <<< '2 3 + p'

5

You can print the top element many times

dc <<< '1 1 + p 2 + p'

2

4

For negative numbers use _ prefix

dc <<< '_1 p'

-1

You can also use capital letters from A to F for numbers between 10 and 15 and . as a decimal point

dc <<< 'A.4 p'

10.4

dc is using abitrary precision which means that the precision is limited only by the available memory. By default the

precision is set to 0 decimals

dc <<< '4 3 / p'

1

We can increase the precision using command k. 2k will use

dc <<< '2k 4 3 / p'

1.33

dc <<< '4k 4 3 / p'

1.3333

You can also use it over multiple lines

dc << EOF

 1 1 +

 3 *

 p

GoalKicker.com – Bash Notes for Professionals

95

 EOF

6

bc is a preprocessor for dc.

Section 25.2: Math using bash capabilities

Arithmetic computation can be also done without involving any other programs like this:

Multiplication:

echo $((5 * 2))

10

Division:

echo $((5 / 2))

2

Modulo:

echo $((5 % 2))

1

Exponentiation:

echo $((5 ** 2))

25

Section 25.3: Math using bc

bc is an arbitrary precision calculator language. It could be used interactively or be executed from command line.

For example, it can print out the result of an expression:

echo '2 + 3' | bc

5

echo '12 / 5' | bc

2

For floating-post arithmetic, you can import standard library bc -l:

echo '12 / 5' | bc -l

2.40000000000000000000

It can be used for comparing expressions:

echo '8 > 5' | bc

1

echo '10 == 11' | bc

0

GoalKicker.com – Bash Notes for Professionals

96

echo '10 == 10 && 8 > 3' | bc

1

Section 25.4: Math using expr

expr or Evaluate expressions evaluates an expression and writes the result on standard output

Basic arithmetics

expr 2 + 3

5

When multiplying, you need to escape the * sign

expr 2 * 3

6

You can also use variables

a=2

expr $a + 3

5

Keep in mind that it only supports integers, so expression like this

expr 3.0 / 2

will throw an error expr: not a decimal number: '3.0'.

It supports regular expression to match patterns

expr 'Hello World' : 'Hell\(.*\)rld'

o Wo

Or find the index of the first char in the search string

This will throw expr: syntax error on Mac OS X, because it uses BSD expr which does not have the

index command, while expr on Linux is generally GNU expr

expr index hello l

3

expr index 'hello' 'lo'

3

GoalKicker.com – Bash Notes for Professionals

97

Chapter 26: Bash Arithmetic

Parameter

Details

EXPRESSION Expression to evaluate

Section 26.1: Simple arithmetic with (())

 #!/bin/bash

echo $((1 + 2))

Output: 3

 # Using variables

 #!/bin/bash

var1=4

var2=5

((output=$var1 * $var2))

printf "%d\n" "$output"

Output: 20

Section 26.2: Arithmetic command

let

let num=1+2

let num="1+2"

let 'num= 1 + 2'

let num=1 num+=2

You need quotes if there are spaces or globbing characters. So those will get error:

let num = 1 + 2 #wrong

let 'num = 1 + 2' #right

let a[1] = 1 + 1 #wrong

let 'a[1] = 1 + 1' #right

(())

((a=$a+1)) #add 1 to a

((a = a + 1)) #like above

((a += 1)) #like above

We can use (()) in if. Some Example:

if ((a > 1)); then echo "a is greater than 1"; fi

The output of (()) can be assigned to a variable:

result=$((a + 1))

Or used directly in output:

echo "The result of a + 1 is $((a + 1))"

GoalKicker.com – Bash Notes for Professionals

98

Section 26.3: Simple arithmetic with expr

 #!/bin/bash

expr 1 + 2

Output: 3

GoalKicker.com – Bash Notes for Professionals

99

Chapter 27: Scoping

Section 27.1: Dynamic scoping in action

Dynamic scoping means that variable lookups occur in the scope where a function is called, not where it is defined.

$ x=3

$ func1 () { echo "in func1: $x"; }

$ func2 () { local x=9; func1; }

$ func2

in func1: 9

$ func1

in func1: 3

In a lexically scoped language, func1 would always look in the global scope for the value of x, because func1 is defined in the local scope.

In a dynamically scoped language, func1 looks in the scope where it is called. When it is called from within func2, it first looks in the body of func2 for a value of x. If it weren't defined there, it would look in the global scope, where func2 was called from.

GoalKicker.com – Bash Notes for Professionals

100

Chapter 28: Process substitution

Section 28.1: Compare two files from the web

The following compares two files with diff using process substitution instead of creating temporary files.

diff <(curl http://www.example.com/page1) <(curl http://www.example.com/page2) Section 28.2: Feed a while loop with the output of a command

This feeds a while loop with the output of a grep command:

while IFS=":" read -r user _

do

 # "$user" holds the username in /etc/passwd

done < <(grep "hello" /etc/passwd)

Section 28.3: Concatenating files

It is well known that you cannot use the same file for input and output in the same command. For instance,

$ cat header.txt body.txt > body.txt

doesn’t do what you want. By the time cat reads body.txt, it has already been truncated by the redirection and it is empty. The final result will be that body.txt will hold the contents of header.txt only.

One might think to avoid this with process substitution, that is, that the command

$ cat header.txt <(cat body.txt) > body.txt

will force the original contents of body.txt to be somehow saved in some buffer somewhere before the file is

truncated by the redirection. It doesn’t work. The cat in parentheses begins reading the file only after all file descriptors have been set up, just like the outer one. There is no point in trying to use process substitution in this case.

The only way to prepend a file to another file is to create an intermediate one:

$ cat header.txt body.txt > body.txt.new

$ mv body.txt.new body.txt

which is what sed or perl or similar programs do under the carpet when called with an edit-in-place option (usually

-i).

Section 28.4: Stream a file through multiple programs at

once

This counts the number of lines in a big file with wc -l while simultaneously compressing it with gzip. Both run concurrently.

tee >(wc -l >& 2) < bigfile | gzip > bigfile.gz Normally tee writes its input to one or more files (and stdout). We can write to commands instead of files with tee

GoalKicker.com – Bash Notes for Professionals

101

>(command).

Here the command wc -l >& 2 counts the lines read from tee (which in turn is reading from bigfile). (The line count is sent to stderr (>& 2) to avoid mixing with the input to gzip.) The stdout of tee is simultaneously fed into gzip.

Section 28.5: With paste command

 # Process substitution with paste command is common

 # To compare the contents of two directories

paste <(ls /path/to/directory1) <(ls /path/to/directory2) Section 28.6: To avoid usage of a sub-shell

One major aspect of process substitution is that it lets us avoid usage of a sub-shell when piping commands from the shell.

This can be demonstrated with a simple example below. I have the following files in my current folder:

$ find . -maxdepth 1 -type f -print

foo bar zoo foobar foozoo barzoo

If I pipe to a while/read loop that increments a counter as follows:

count=0

find . -maxdepth 1 -type f -print | while IFS= read -r _; do

((count++))

done

$count now does not contain 6, because it was modified in the sub-shell context. Any of the commands shown below are run in a sub-shell context and the scope of the variables used within are lost after the sub-shell

terminates.

command &

command | command

(command)

Process substitution will solve the problem by avoiding use the of pipe | operator as in

count=0

while IFS= read -r _; do

((count++))

done < <(find . -maxdepth 1 -type f -print)

This will retain the count variable value as no sub-shells are invoked.

GoalKicker.com – Bash Notes for Professionals

102

Chapter 29: Programmable completion

Section 29.1: Simple completion using function

_mycompletion() {

local command_name="$1" # not used in this example

local current_word="$2"

local previous_word="$3" # not used in this example

 # COMPREPLY is an array which has to be filled with the possible completions

 # compgen is used to filter matching completions

COMPREPLY=($(compgen -W 'hello world' -- "$current_word"))

}

complete -F _mycompletion mycommand

Usage Example:

$ mycommand [TAB][TAB]

hello world

$ mycommand h[TAB][TAB]

$ mycommand hello

Section 29.2: Simple completion for options and filenames

 # The following shell function will be used to generate completions for

 # the "nuance_tune" command.

_nuance_tune_opts ()

{

local curr_arg prev_arg

curr_arg=${COMP_WORDS[COMP_CWORD]}

prev_arg=${COMP_WORDS[COMP_CWORD-1]}

 # The "config" option takes a file arg, so get a list of the files in the

 # current dir. A case statement is probably unnecessary here, but leaves

 # room to customize the parameters for other flags.

case "$prev_arg" in

-config)

COMPREPLY=($(/bin/ls -1))

return 0

;;

esac

 # Use compgen to provide completions for all known options.

COMPREPLY=($(compgen -W '-analyze -experiment -generate_groups -compute_thresh -config -output

-help -usage -force -lang -grammar_overrides -begin_date -end_date -group -dataset -multiparses -

dump_records -no_index -confidencelevel -nrecs -dry_run -rec_scripts_only -save_temp -full_trc -

single_session -verbose -ep -unsupervised -write_manifest -remap -noreparse -upload -reference -

target -use_only_matching -histogram -stepsize' -- $curr_arg));

}

 # The -o parameter tells Bash to process completions as filenames, where applicable.

complete -o filenames -F _nuance_tune_opts nuance_tune

GoalKicker.com – Bash Notes for Professionals

103

Chapter 30: Customizing PS1

Section 30.1: Colorize and customize terminal prompt

This is how the author sets their personal PS1 variable:

gitPS1(){

gitps1=$(git branch 2>/dev/null | grep '*')

gitps1="${gitps1:+ (${gitps1/#* /})}"

echo "$gitps1"

}

 #Please use the below function if you are a mac user

gitPS1ForMac(){

git branch 2> /dev/null | sed -e '/^[^*]/d' -e 's/* \(.*\)/ (\1)/'

}

timeNow(){

echo "$(date +%r)"

}

if ["$color_prompt" = yes]; then

if [x$EUID = x0]; then

PS1='\[\033[1;38m\][$(timeNow)]\[\033[00m\]

\[\033[1;31m\]\u\[\033[00m\]\[\033[1;37m\]@\[\033[00m\]\[\033[1;33m\]\h\[\033[00m\]

\[\033[1;34m\]\w\[\033[00m\]\[\033[1;36m\]$(gitPS1)\[\033[00m\] \[\033[1;31m\]:/#\[\033[00m\] '

else

PS1='\[\033[1;38m\][$(timeNow)]\[\033[00m\]

\[\033[1;32m\]\u\[\033[00m\]\[\033[1;37m\]@\[\033[00m\]\[\033[1;33m\]\h\[\033[00m\]

\[\033[1;34m\]\w\[\033[00m\]\[\033[1;36m\]$(gitPS1)\[\033[00m\] \[\033[1;32m\]:/$\[\033[00m\] '

fi

else

PS1='[$(timeNow)] \u@\h \w$(gitPS1) :/$ '

fi

And this is how my prompt looks like:

Color reference:

 # Colors

txtblk='\e[0;30m' # Black - Regular

txtred='\e[0;31m' # Red

txtgrn='\e[0;32m' # Green

txtylw='\e[0;33m' # Yellow

txtblu='\e[0;34m' # Blue

txtpur='\e[0;35m' # Purple

txtcyn='\e[0;36m' # Cyan

txtwht='\e[0;37m' # White

bldblk='\e[1;30m' # Black - Bold

bldred='\e[1;31m' # Red

bldgrn='\e[1;32m' # Green

bldylw='\e[1;33m' # Yellow

bldblu='\e[1;34m' # Blue

bldpur='\e[1;35m' # Purple

bldcyn='\e[1;36m' # Cyan

GoalKicker.com – Bash Notes for Professionals

104

bldwht='\e[1;37m' # White

unkblk='\e[4;30m' # Black - Underline

undred='\e[4;31m' # Red

undgrn='\e[4;32m' # Green

undylw='\e[4;33m' # Yellow

undblu='\e[4;34m' # Blue

undpur='\e[4;35m' # Purple

undcyn='\e[4;36m' # Cyan

undwht='\e[4;37m' # White

bakblk='\e[40m' # Black - Background

bakred='\e[41m' # Red

badgrn='\e[42m' # Green

bakylw='\e[43m' # Yellow

bakblu='\e[44m' # Blue

bakpur='\e[45m' # Purple

bakcyn='\e[46m' # Cyan

bakwht='\e[47m' # White

txtrst='\e[0m' # Text Reset

Notes:

Make the changes in ~/.bashrc or /etc/bashrc or ~/.bash_profile or ~. /profile file (depending on the OS) and save it.

For root you might also need to edit the /etc/bash.bashrc or /root/.bashrc file

Run source ~/.bashrc (distro specific) after saving the file.

Note: if you have saved the changes in ~/.bashrc, then remember to add source ~/.bashrc in your

~/.bash_profile so that this change in PS1 will be recorded every time the Terminal application starts.

Section 30.2: Show git branch name in terminal prompt

You can have functions in the PS1 variable, just make sure to single quote it or use escape for special chars:

gitPS1(){

gitps1=$(git branch 2>/dev/null | grep '*')

gitps1="${gitps1:+ (${gitps1/#* /})}"

echo "$gitps1"

}

PS1='\u@\h:\w$(gitPS1)$ '

It will give you a prompt like this:

user@Host:/path (master)$

Notes:

Make the changes in ~/.bashrc or /etc/bashrc or ~/.bash_profile or ~. /profile file (depending on the OS) and save it.

Run source ~/.bashrc (distro specific) after saving the file.

Section 30.3: Show time in terminal prompt

timeNow(){

echo "$(date +%r)"

}

GoalKicker.com – Bash Notes for Professionals

105

PS1='[$(timeNow)] \u@\h:\w$ '

It will give you a prompt like this:

[05:34:37 PM] user@Host:/path$

Notes:

Make the changes in ~/.bashrc or /etc/bashrc or ~/.bash_profile or ~. /profile file (depending on the OS) and save it.

Run source ~/.bashrc (distro specific) after saving the file.

Section 30.4: Show a git branch using PROMPT_COMMAND

If you are inside a folder of a git repository it might be nice to show the current branch you are on. In ~/.bashrc or

/etc/bashrc add the following (git is required for this to work):

function prompt_command {

 # Check if we are inside a git repository

if git status > /dev/null 2>& 1; then

 # Only get the name of the branch

export GIT_STATUS=$(git status | grep 'On branch' | cut -b 10-)

else

export GIT_STATUS=""

fi

}

 # This function gets called every time PS1 is shown

PROMPT_COMMAND=prompt_command

PS1=" \$GIT_STATUS \u@\h:\w\$ "

If we are in a folder inside a git repository this will output:

branch user@machine:~$

And if we are inside a normal folder:

user@machine:~$

Section 30.5: Change PS1 prompt

To change PS1, you just have to change the value of PS1 shell variable. The value can be set in ~/.bashrc or

/etc/bashrc file, depending on the distro. PS1 can be changed to any plain text like:

PS1="hello "

Besides the plain text, a number of backslash-escaped special characters are supported:

Format

Action

\a

an ASCII bell character (07)

\d

the date in “Weekday Month Date” format (e.g., “Tue May 26”)

GoalKicker.com – Bash Notes for Professionals

106

the format is passed to strftime(3) and the result is inserted into the prompt string; an empty format

\D{format} results in a locale-specific time representation. The braces are required

\e

an ASCII escape character (033)

\h

the hostname up to the first ‘.’

\H

the hostname

\j

the number of jobs currently managed by the shell

\l

the basename of the shell’s terminal device name

\n

newline

\r

carriage return

\s

the name of the shell, the basename of $0 (the portion following the final slash)

\t

the current time in 24-hour HH:MM:SS format

\T

the current time in 12-hour HH:MM:SS format

\@

the current time in 12-hour am/pm format

\A

the current time in 24-hour HH:MM format

\u

the username of the current user

\v

the version of bash (e.g., 2.00)

\V

the release of bash, version + patch level (e.g., 2.00.0)

\w

the current working directory, with $HOME abbreviated with a tilde

\W

the basename of the current working directory, with $HOME abbreviated with a tilde

\!

the history number of this command

\#

the command number of this command

\$

if the effective UID is 0, a #, otherwise a $

\nnn*

the character corresponding to the octal number nnn

\

a backslash

begin a sequence of non-printing characters, which could be used to embed a terminal control

\[

sequence into the prompt

\]

end a sequence of non-printing characters

So for example, we can set PS1 to:

PS1="\u@\h:\w\$ "

And it will output:

user@machine:~$

Section 30.6: Show previous command return status and time

Sometimes we need a visual hint to indicate the return status of previous command. The following snippet make

put it at the head of the PS1.

Note that the __stat() function should be called every time a new PS1 is generated, or else it would stick to the return status of last command of your .bashrc or .bash_profile.

 # -ANSI-COLOR-CODES- #

Color_Off="\033[0m"

 ###-Regular-###

Red="\033[0;31m"

Green="\033[0;32m"

GoalKicker.com – Bash Notes for Professionals

107

Yellow="\033[0;33m"

 ####-Bold-####

function __stat() {

if [$? -eq 0]; then

echo -en "$Green ✔ $Color_Off "

else

echo -en "$Red ✘ $Color_Off "

fi

}

PS1='$(__stat)'

PS1+="[\t] "

PS1+="\e[0;33m\u@\h\e[0m:\e[1;34m\w\e[0m \n$ "

export PS1

GoalKicker.com – Bash Notes for Professionals

108

Chapter 31: Brace Expansion

Section 31.1: Modifying filename extension

$ mv filename. {jar, zip}

This expands into mv filename.jar filename.zip .

Section 31.2: Create directories to group files by month and

year

$ mkdir 20{09..11}-{01..12}

Entering the ls command will show that the following directories were created:

2009-01 2009-04 2009-07 2009-10 2010-01 2010-04 2010-07 2010-10 2011-01 2011-04 2011-07 2011-10

2009-02 2009-05 2009-08 2009-11 2010-02 2010-05 2010-08 2010-11 2011-02 2011-05 2011-08 2011-11

2009-03 2009-06 2009-09 2009-12 2010-03 2010-06 2010-09 2010-12 2011-03 2011-06 2011-09 2011-12

Putting a 0 in front of 9 in the example ensures the numbers are padded with a single 0. You can also pad numbers with multiple zeros, for example:

$ echo {001..10}

001 002 003 004 005 006 007 008 009 010

Section 31.3: Create a backup of dotfiles

$ cp .vimrc{,.bak}

This expands into the command cp .vimrc .vimrc.bak.

Section 31.4: Use increments

$ echo {0..10..2}

0 2 4 6 8 10

A third parameter to specify an increment, i.e. {start..end..increment}

Using increments is not constrained to just numbers

$ for c in {a..z..5}; do echo -n $c; done

afkpuz

Section 31.5: Using brace expansion to create lists

Bash can easily create lists from alphanumeric characters.

 # list from a to z

$ echo {a..z}

a b c d e f g h i j k l m n o p q r s t u v w x y z

 # reverse from z to a

$ echo {z..a}

GoalKicker.com – Bash Notes for Professionals

109

z y x w v u t s r q p o n m l k j i h g f e d c b a

 # digits

$ echo {1..20}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 # with leading zeros

$ echo {01..20}

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

 # reverse digit

$ echo {20..1}

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

 # reversed with leading zeros

$ echo {20..01}

20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01

 # combining multiple braces

$ echo {a..d}{1..3}

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3

Brace expansion is the very first expansion that takes place, so it cannot be combined with any other expansions.

Only chars and digits can be used.

This won't work: echo {$(date +$H)..24}

Section 31.6: Make Multiple Directories with Sub-Directories

mkdir -p toplevel/sublevel_{01..09}/{child1,child2,child3}

This will create a top level folder called toplevel, nine folders inside of toplevel named sublevel_01, sublevel_02, etc. Then inside of those sublevels: child1, child2, child3 folders, giving you:

toplevel/sublevel_01/child1

toplevel/sublevel_01/child2

toplevel/sublevel_01/child3

toplevel/sublevel_02/child1

and so on. I find this very useful for creating multiple folders and sub folders for my specific purposes, with one bash command. Substitute variables to help automate/parse information given to the script.

GoalKicker.com – Bash Notes for Professionals

110

Chapter 32: getopts : smart positional-

parameter parsing

Parameter

Detail

optstring

The option characters to be recognized

name

Then name where parsed option is stored

Section 32.1: pingnmap

 #!/bin/bash

 # Script name : pingnmap

 # Scenario : The systems admin in company X is tired of the monotonous job

 # of pinging and nmapping, so he decided to simplify the job using a script.

 # The tasks he wish to achieve is

 # 1. Ping - with a max count of 5 -the given IP address/domain. AND/OR

 # 2. Check if a particular port is open with a given IP address/domain.

 # And getopts is for her rescue.

 # A brief overview of the options

 # n : meant for nmap

 # t : meant for ping

 # i : The option to enter the IP address

 # p : The option to enter the port

 # v : The option to get the script version

while getopts ':nti:p:v' opt

 #putting : in the beginnnig suppresses the errors for invalid options

do

case "$opt" in

'i')ip="${OPTARG}"

;;

'p')port="${OPTARG}"

;;

'n')nmap_yes=1;

;;

't')ping_yes=1;

;;

'v')echo "pingnmap version 1.0.0"

;;

*) echo "Invalid option $opt"

echo "Usage : "

echo "pingmap -[n|t[i|p]|v]"

;;

esac

done

if [! -z "$nmap_yes"] && ["$nmap_yes" -eq "1"]

then

if [! -z "$ip"] && [! -z "$port"]

then

nmap -p "$port" "$ip"

fi

fi

if [! -z "$ping_yes"] && ["$ping_yes" -eq "1"]

then

if [! -z "$ip"]

then

ping -c 5 "$ip"

GoalKicker.com – Bash Notes for Professionals

111

 fi

fi

shift $((OPTIND - 1)) # Processing additional arguments

if [! -z "$@"]

then

echo "Bogus arguments at the end : $@"

fi

Output

$./pingnmap -nt -i google.com -p 80

Starting Nmap 6.40 (http://nmap.org) at 2016-07-23 14:31 IST

Nmap scan report for google.com (216.58.197.78)

Host is up (0.034s latency).

rDNS record for 216.58.197.78: maa03s21-in-f14.1e100.net

PORT STATE SERVICE

80/tcp open http

Nmap done: 1 IP address (1 host up) scanned in 0.22 seconds

PING google.com (216.58.197.78) 56(84) bytes of data.

64 bytes from maa03s21-in-f14.1e100.net (216.58.197.78): icmp_seq=1 ttl=57 time=29.3 ms

64 bytes from maa03s21-in-f14.1e100.net (216.58.197.78): icmp_seq=2 ttl=57 time=30.9 ms

64 bytes from maa03s21-in-f14.1e100.net (216.58.197.78): icmp_seq=3 ttl=57 time=34.7 ms

64 bytes from maa03s21-in-f14.1e100.net (216.58.197.78): icmp_seq=4 ttl=57 time=39.6 ms

64 bytes from maa03s21-in-f14.1e100.net (216.58.197.78): icmp_seq=5 ttl=57 time=32.7 ms

--- google.com ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4007ms

rtt min/avg/max/mdev = 29.342/33.481/39.631/3.576 ms

$./pingnmap -v

pingnmap version 1.0.0

$./pingnmap -h

Invalid option ?

Usage :

pingmap -[n|t[i|p]|v]

$./pingnmap -v

pingnmap version 1.0.0

$./pingnmap -h

Invalid option ?

Usage :

pingmap -[n|t[i|p]|v]

GoalKicker.com – Bash Notes for Professionals

112

Chapter 33: Debugging

Section 33.1: Checking the syntax of a script with "-n"

The -n flag enables you to check the syntax of a script without having to execute it:

~> $ bash -n testscript.sh

testscript.sh: line 128: unexpected EOF while looking for matching `"'

testscript.sh: line 130: syntax error: unexpected end of file

Section 33.2: Debugging using bashdb

Bashdb is a utility that is similar to gdb, in that you can do things like set breakpoints at a line or at a function, print content of variables, you can restart script execution and more.

You can normally install it via your package manager, for example on Fedora:

sudo dnf install bashdb

Or get it from the homepage. Then you can run it with your script as a paramater:

bashdb < YOUR SCRIPT>

Here are a few commands to get you started:

l - show local lines, press l again to scroll down

s - step to next line

print $VAR - echo out content of variable

restart - reruns bashscript, it re-loads it prior to execution.

eval - evaluate some custom command, ex: eval echo hi

b set breakpoint on some line

c - continue till some breakpoint

i b - info on break points

d - delete breakpoint at line #

shell - launch a sub-shell in the middle of execution, this is handy for manipulating variables

For more information, I recommend consulting the manual:

http://www.rodericksmith.plus.com/outlines/manuals/bashdbOutline.html

See also homepage:

http://bashdb.sourceforge.net/

Section 33.3: Debugging a bash script with "-x"

Use "-x" to enable debug output of executed lines. It can be run on an entire session or script, or enabled programmatically within a script.

Run a script with debug output enabled:

$ bash -x myscript.sh

GoalKicker.com – Bash Notes for Professionals

113

Or

$ bash --debug myscript.sh

Turn on debugging within a bash script. It may optionally be turned back on, though debug output is automatically reset when the script exits.

 #!/bin/bash

set -x # Enable debugging

 # some code here

set +x # Disable debugging output.

GoalKicker.com – Bash Notes for Professionals

114

Chapter 34: Pattern matching and regular

expressions

Section 34.1: Get captured groups from a regex match

against a string

a='I am a simple string with digits 1234'

pat='(.*) ([0-9]+)'

[["$a" =~ $pat]]

echo "${BASH_REMATCH[0]}"

echo "${BASH_REMATCH[1]}"

echo "${BASH_REMATCH[2]}"

Output:

I am a simple string with digits 1234

I am a simple string with digits

1234

Section 34.2: Behaviour when a glob does not match anything

Preparation

$ mkdir globbing

$ cd globbing

$ mkdir -p folder/{sub,another}folder/content/deepfolder/

touch macy stacy tracy "file with space" folder/{sub,another}folder/content/deepfolder/file

.hiddenfile

$ shopt -u nullglob

$ shopt -u failglob

$ shopt -u dotglob

$ shopt -u nocaseglob

$ shopt -u extglob

$ shopt -u globstar

In case the glob does not match anything the result is determined by the options nullglob and failglob. If neither of them are set, Bash will return the glob itself if nothing is matched

$ echo no*match

no*match

If nullglob is activated then nothing (null) is returned:

$ shopt -s nullglob

$ echo no*match

$

If failglob is activated then an error message is returned:

$ shopt -s failglob

$ echo no*match

bash: no match: no*match

$

GoalKicker.com – Bash Notes for Professionals

115

Notice, that the failglob option supersedes the nullglob option, i.e., if nullglob and failglob are both set, then -

in case of no match - an error is returned.

Section 34.3: Check if a string matches a regular expression

Version ≥ 3.0

Check if a string consists in exactly 8 digits:

$ date=20150624

$ [[$date =~ ^[0-9]{8}$]] && echo "yes" || echo "no"

yes

$ date=hello

$ [[$date =~ ^[0-9]{8}$]] && echo "yes" || echo "no"

no

Section 34.4: Regex matching

pat='[^0-9]+([0-9]+)'

s='I am a string with some digits 1024'

[[$s =~ $pat]] # $pat must be unquoted

echo "${BASH_REMATCH[0]}"

echo "${BASH_REMATCH[1]}"

Output:

I am a string with some digits 1024

1024

Instead of assigning the regex to a variable ($pat) we could also do:

[[$s =~ [^0-9]+([0-9]+)]]

Explanation

The [[$s =~ $pat]] construct performs the regex matching

The captured groups i.e the match results are available in an array named BASH_REMATCH

The 0th index in the BASH_REMATCH array is the total match

The i'th index in the BASH_REMATCH array is the i'th captured group, where i = 1, 2, 3 ...

Section 34.5: The * glob

Preparation

$ mkdir globbing

$ cd globbing

$ mkdir -p folder/{sub,another}folder/content/deepfolder/

touch macy stacy tracy "file with space" folder/{sub,another}folder/content/deepfolder/file

.hiddenfile

$ shopt -u nullglob

$ shopt -u failglob

$ shopt -u dotglob

$ shopt -u nocaseglob

$ shopt -u extglob

$ shopt -u globstar

GoalKicker.com – Bash Notes for Professionals

116

The asterisk * is probably the most commonly used glob. It simply matches any String

$ echo *acy

macy stacy tracy

A single * will not match files and folders that reside in subfolders

$ echo *

emptyfolder folder macy stacy tracy

$ echo folder/*

folder/anotherfolder folder/subfolder

Section 34.6: The ** glob

Version ≥ 4.0

Preparation

$ mkdir globbing

$ cd globbing

$ mkdir -p folder/{sub,another}folder/content/deepfolder/

touch macy stacy tracy "file with space" folder/{sub,another}folder/content/deepfolder/file

.hiddenfile

$ shopt -u nullglob

$ shopt -u failglob

$ shopt -u dotglob

$ shopt -u nocaseglob

$ shopt -u extglob

$ shopt -s globstar

Bash is able to interpret two adjacent asterisks as a single glob. With the globstar option activated this can be used to match folders that reside deeper in the directory structure

echo **

emptyfolder folder folder/anotherfolder folder/anotherfolder/content

folder/anotherfolder/content/deepfolder folder/anotherfolder/content/deepfolder/file folder/subfolder folder/subfolder/content folder/subfolder/content/deepfolder folder/subfolder/content/deepfolder/file macy stacy tracy

The ** can be thought of a path expansion, no matter how deep the path is. This example matches any file or

folder that starts with deep, regardless of how deep it is nested:

$ echo **/deep*

folder/anotherfolder/content/deepfolder folder/subfolder/content/deepfolder Section 34.7: The ? glob

Preparation

$ mkdir globbing

$ cd globbing

$ mkdir -p folder/{sub,another}folder/content/deepfolder/

touch macy stacy tracy "file with space" folder/{sub,another}folder/content/deepfolder/file

.hiddenfile

$ shopt -u nullglob

$ shopt -u failglob

$ shopt -u dotglob

GoalKicker.com – Bash Notes for Professionals

117

$ shopt -u nocaseglob

$ shopt -u extglob

$ shopt -u globstar

The ? simply matches exactly one character

$ echo ?acy

macy

$ echo ??acy

stacy tracy

Section 34.8: The [] glob

Preparation

$ mkdir globbing

$ cd globbing

$ mkdir -p folder/{sub,another}folder/content/deepfolder/

touch macy stacy tracy "file with space" folder/{sub,another}folder/content/deepfolder/file

.hiddenfile

$ shopt -u nullglob

$ shopt -u failglob

$ shopt -u dotglob

$ shopt -u nocaseglob

$ shopt -u extglob

$ shopt -u globstar

If there is a need to match specific characters then '[]' can be used. Any character inside '[]' will be matched exactly once.

$ echo [m]acy

macy

$ echo [st][tr]acy

stacy tracy

The [] glob, however, is more versatile than just that. It also allows for a negative match and even matching ranges of characters and character classes. A negative match is achieved by using ! or ^ as the first character following [.

We can match stacy by

$ echo [! t][^r]acy

stacy

Here we are telling bash the we want to match only files which do not not start with a t and the second letter is not an r and the file ends in acy.

Ranges can be matched by seperating a pair of characters with a hyphen (-). Any character that falls between those two enclosing characters - inclusive - will be matched. E.g., [r-t] is equivalent to [rst]

$ echo [r-t][r-t]acy

stacy tracy

Character classes can be matched by [:class:], e.g., in order to match files that contain a whitespace $ echo *[[:blank:]]*

file with space

GoalKicker.com – Bash Notes for Professionals

118

Section 34.9: Matching hidden files

Preparation

$ mkdir globbing

$ cd globbing

$ mkdir -p folder/{sub,another}folder/content/deepfolder/

touch macy stacy tracy "file with space" folder/{sub,another}folder/content/deepfolder/file

.hiddenfile

$ shopt -u nullglob

$ shopt -u failglob

$ shopt -u dotglob

$ shopt -u nocaseglob

$ shopt -u extglob

$ shopt -u globstar

The Bash built-in option dotglob allows to match hidden files and folders, i.e., files and folders that start with a .

$ shopt -s dotglob

$ echo *

file with space folder .hiddenfile macy stacy tracy

Section 34.10: Case insensitive matching

Preparation

$ mkdir globbing

$ cd globbing

$ mkdir -p folder/{sub,another}folder/content/deepfolder/

touch macy stacy tracy "file with space" folder/{sub,another}folder/content/deepfolder/file

.hiddenfile

$ shopt -u nullglob

$ shopt -u failglob

$ shopt -u dotglob

$ shopt -u nocaseglob

$ shopt -u extglob

$ shopt -u globstar

Setting the option nocaseglob will match the glob in a case insensitive manner

$ echo M*

M*

$ shopt -s nocaseglob

$ echo M*

macy

Section 34.11: Extended globbing

Version ≥ 2.02

Preparation

$ mkdir globbing

$ cd globbing

$ mkdir -p folder/{sub,another}folder/content/deepfolder/

touch macy stacy tracy "file with space" folder/{sub,another}folder/content/deepfolder/file

.hiddenfile

$ shopt -u nullglob

GoalKicker.com – Bash Notes for Professionals

119

$ shopt -u failglob

$ shopt -u dotglob

$ shopt -u nocaseglob

$ shopt -u extglob

$ shopt -u globstar

Bash's built-in extglob option can extend a glob's matching capabilities

shopt -s extglob

The following sub-patterns comprise valid extended globs:

? (pattern-list) – Matches zero or one occurrence of the given patterns

*(pattern-list) – Matches zero or more occurrences of the given patterns

+(pattern-list) – Matches one or more occurrences of the given patterns

@(pattern-list) – Matches one of the given patterns

!(pattern-list) – Matches anything except one of the given patterns

The pattern-list is a list of globs separated by |.

$ echo *([r-t])acy

stacy tracy

$ echo *([r-t]|m)acy

macy stacy tracy

$ echo ? ([a-z])acy

macy

The pattern-list itself can be another, nested extended glob. In the above example we have seen that we can

match tracy and stacy with *(r-t). This extended glob itself can be used inside the negated extended glob

!(pattern-list) in order to match macy

$ echo !(*([r-t]))acy

macy

It matches anything that does not start with zero or more occurrences of the letters r, s and t, which leaves only macy as possible match.

GoalKicker.com – Bash Notes for Professionals

120

Chapter 35: Change shell

Section 35.1: Find the current shell

There are a few ways to determine the current shell

echo $0

ps -p $$

echo $SHELL

Section 35.2: List available shells

To list available login shells :

cat /etc/shells

Example:

$ cat /etc/shells

 # /etc/shells: valid login shells

/bin/sh

/bin/dash

/bin/bash

/bin/rbash

Section 35.3: Change the shell

To change the current bash run these commands

export SHELL=/bin/bash

exec /bin/bash

to change the bash that opens on startup edit .profile and add those lines

GoalKicker.com – Bash Notes for Professionals

121

Chapter 36: Internal variables

An overview of Bash's internal variables, where, how, and when to use them.

Section 36.1: Bash internal variables at a glance

Variable

Details

Function/script positional parameters (arguments). Expand as follows:

$* and $@ are the same as $1 $2 ... (note that it generally makes no sense to leave those

$* / $@

unquoted)

"$*" is the same as "$1 $2 ..." 1

"$@" is the same as "$1" "$2" ...

1. Arguments are separated by the first character of $IFS, which does not have to be a space.

$#

Number of positional parameters passed to the script or function

Process ID of the last (righ-most for pipelines) command in the most recently job put into the

$!

background (note that it's not necessarily the same as the job's process group ID when job control

is enabled)

$$

ID of the process that executed bash

$?

Exit status of the last command

$n

Positional parameters, where n=1, 2, 3, ..., 9

${n}

Positional parameters (same as above), but n can be > 9

In scripts, path with which the script was invoked; with bash -c 'printf "%s\n" "$0"' name $0

args': name (the first argument after the inline script), otherwise, the argv[0] that bash received.

$_

Last field of the last command

$IFS

Internal field separator

$PATH

PATH environment variable used to look-up executables

$OLDPWD

Previous working directory

$PWD

Present working directory

$FUNCNAME

Array of function names in the execution call stack

$BASH_SOURCE

Array containing source paths for elements in FUNCNAME array. Can be used to get the script path.

$BASH_ALIASES Associative array containing all currently defined aliases

$BASH_REMATCH Array of matches from the last regex match

$BASH_VERSION Bash version string

$BASH_VERSINFO An array of 6 elements with Bash version information

Absolute path to the currently executing Bash shell itself (heuristically determined by

$BASH

bash based

on argv[0] and the value of $PATH; may be wrong in corner cases)

$BASH_SUBSHELL Bash subshell level

$UID

Real (not effective if different) User ID of the process running bash

$PS1

Primary command line prompt; see Using the PS* Variables

$PS2

Secondary command line prompt (used for additional input)

$PS3

Tertiary command line prompt (used in select loop)

$PS4

Quaternary command line prompt (used to append info with verbose output)

$RANDOM

A pseudo random integer between 0 and 32767

Variable used by

$REPLY

read by default when no variable is specified. Also used by SELECT to return the

user-supplied value

Array variable that holds the exit status values of each command in the most recently executed

$PIPESTATUS

foreground pipeline.

GoalKicker.com – Bash Notes for Professionals

122

Variable Assignment must have no space before and after. a=123 not a = 123. The latter (an equal sign surrounded by spaces) in isolation means run the command a with the arguments = and 123, though it is

also seen in the string comparison operator (which syntactically is an argument to [or [[or whichever

test you are using).

Section 36.2: $@

"$@" expands to all of the command line arguments as separate words. It is different from "$*", which expands to all of the arguments as a single word.

"$@" is especially useful for looping through arguments and handling arguments with spaces.

Consider we are in a script that we invoked with two arguments, like so:

$. /script.sh "␣1␣2␣" "␣3␣␣4␣"

The variables $* or $@ will expand into $1␣$2, which in turn expand into 1␣2␣3␣4 so the loop below:

for var in $*; do # same for var in $@; do

echo \\< "$var"\\>

done

will print for both

<1>

<2>

<3>

<4>

While "$*" will be expanded into "$1␣$2" which will in turn expand into "␣1␣2␣␣␣3␣␣4␣" and so the loop: for var in "$*"; do

echo \\< "$var"\\>

done

will only invoke echo once and will print

<␣1␣2␣␣␣3␣␣4␣>

And finally "$@" will expand into "$1" "$2", which will expand into "␣1␣2␣" "␣3␣␣4␣" and so the loop for var in "$@"; do

echo \\< "$var"\\>

done

will print

<␣1␣2␣>

<␣3␣␣4␣>

thereby preserving both the internal spacing in the arguments and the arguments separation. Note that the

GoalKicker.com – Bash Notes for Professionals

123

construction for var in "$@"; do ... is so common and idiomatic that it is the default for a for loop and can be shortened to for var; do

Section 36.3: $#

To get the number of command line arguments or positional parameters - type:

 #!/bin/bash

echo "$#"

When run with three arguments the example above will result with the output:

~> $. /testscript.sh firstarg secondarg thirdarg

3

Section 36.4: $HISTSIZE

The maximum number of remembered commands:

~> $ echo $HISTSIZE

1000

Section 36.5: $FUNCNAME

To get the name of the current function - type:

my_function()

{

echo "This function is $FUNCNAME" # This will output "This function is my_function"

}

This instruction will return nothing if you type it outside the function:

my_function

echo "This function is $FUNCNAME" # This will output "This function is"

Section 36.6: $HOME

The home directory of the user

~> $ echo $HOME

/home/user

Section 36.7: $IFS

Contains the Internal Field Separator string that bash uses to split strings when looping etc. The default is the white space characters: \n (newline), \t (tab) and space. Changing this to something else allows you to split strings using different characters:

IFS=","

INPUTSTR="a,b,c,d"

for field in ${INPUTSTR}; do

echo $field

GoalKicker.com – Bash Notes for Professionals

124

done

The output of the above is:

a

b

c

d

Notes:

This is responsible for the phenomenon known as word splitting.

Section 36.8: $OLDPWD

OLDPWD (OLDPrintWorkingDirectory) contains directory before the last cd command:

~> $ cd directory

directory> $ echo $OLDPWD

/home/user

Section 36.9: $PWD

PWD (PrintWorkingDirectory) The current working directory you are in at the moment:

~> $ echo $PWD

/home/user

~> $ cd directory

directory> $ echo $PWD

/home/user/directory

Section 36.10: $1 $2 $3 etc..

Positional parameters passed to the script from either the command line or a function:

 #!/bin/bash

 # $n is the n'th positional parameter

echo "$1"

echo "$2"

echo "$3"

The output of the above is:

~> $. /testscript.sh firstarg secondarg thirdarg

firstarg

secondarg

thirdarg

If number of positional argument is greater than nine, curly braces must be used.

 # "set -- " sets positional parameters

set -- 1 2 3 4 5 6 7 8 nine ten eleven twelve

 # the following line will output 10 not 1 as the value of $1 the digit 1

 # will be concatenated with the following 0

echo $10 # outputs 1

echo ${10} # outputs ten

GoalKicker.com – Bash Notes for Professionals

125

 # to show this clearly:

set -- arg{1..12}

echo $10

echo ${10}

Section 36.11: $*

Will return all of the positional parameters in a single string.

testscript.sh:

 #!/bin/bash

echo "$*"

Run the script with several arguments:

. /testscript.sh firstarg secondarg thirdarg

Output:

firstarg secondarg thirdarg

Section 36.12: $!

The Process ID (pid) of the last job run in the background:

~> $ ls &

testfile1 testfile2

[1]+ Done ls

~> $ echo $!

21715

Section 36.13: $?

The exit status of the last executed function or command. Usually 0 will mean OK anything else will indicate a

failure:

~> $ ls *.blah; echo $?

ls: cannot access *.blah: No such file or directory

2

~> $ ls; echo $?

testfile1 testfile2

0

Section 36.14: $$

The Process ID (pid) of the current process:

~> $ echo $$

13246

Section 36.15: $RANDOM

Each time this parameter is referenced, a random integer between 0 and 32767 is generated. Assigning a value to

GoalKicker.com – Bash Notes for Professionals

126

this variable seeds the random number generator (source).

~> $ echo $RANDOM

27119

~> $ echo $RANDOM

1349

Section 36.16: $BASHPID

Process ID (pid) of the current instance of Bash. This is not the same as the $$ variable, but it often gives the same result. This is new in Bash 4 and doesn't work in Bash 3.

~> $ echo " \$\$ pid = $$ BASHPID = $BASHPID"

$$ pid = 9265 BASHPID = 9265

Section 36.17: $BASH_ENV

An environment variable pointing to the Bash startup file which is read when a script is invoked.

Section 36.18: $BASH_VERSINFO

An array containing the full version information split into elements, much more convenient than $BASH_VERSION if you're just looking for the major version:

~> $ for ((i=0; i< =5; i++)); do echo "BASH_VERSINFO[$i] = ${BASH_VERSINFO[$i]}"; done BASH_VERSINFO[0] = 3

BASH_VERSINFO[1] = 2

BASH_VERSINFO[2] = 25

BASH_VERSINFO[3] = 1

BASH_VERSINFO[4] = release

BASH_VERSINFO[5] = x86_64-redhat-linux-gnu

Section 36.19: $BASH_VERSION

Shows the version of bash that is running, this allows you to decide whether you can use any advanced features:

~> $ echo $BASH_VERSION

4.1.2(1)-release

Section 36.20: $EDITOR

The default editor that will be involked by any scripts or programs, usually vi or emacs.

~> $ echo $EDITOR

vi

Section 36.21: $HOSTNAME

The hostname assigned to the system during startup.

~> $ echo $HOSTNAME

mybox.mydomain.com

GoalKicker.com – Bash Notes for Professionals

127

Section 36.22: $HOSTTYPE

This variable identifies the hardware, it can be useful in determining which binaries to execute:

~> $ echo $HOSTTYPE

x86_64

Section 36.23: $MACHTYPE

Similar to $HOSTTYPE above, this also includes information about the OS as well as hardware

~> $ echo $MACHTYPE

x86_64-redhat-linux-gnu

Section 36.24: $OSTYPE

Returns information about the type of OS running on the machine, eg.

~> $ echo $OSTYPE

linux-gnu

Section 36.25: $PATH

The search path for finding binaries for commands. Common examples include /usr/bin and /usr/local/bin.

When a user or script attempts to run a command, the paths in $PATH are searched in order to find a matching file with execute permission.

The directories in $PATH are separated by a : character.

~> $ echo "$PATH"

/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin

So, for example, given the above $PATH, if you type lss at the prompt, the shell will look for

/usr/kerberos/bin/lss, then /usr/local/bin/lss, then /bin/lss, then /usr/bin/lss, in this order, before concluding that there is no such command.

Section 36.26: $PPID

The Process ID (pid) of the script or shell's parent, meaning the process than invoked the current script or shell.

~> $ echo $$

13016

~> $ echo $PPID

13015

Section 36.27: $SECONDS

The number of seconds a script has been running. This can get quite large if shown in the shell:

~> $ echo $SECONDS

98834

GoalKicker.com – Bash Notes for Professionals

128

Section 36.28: $SHELLOPTS

A readonly list of the options bash is supplied on startup to control its behaviour:

~> $ echo $SHELLOPTS

braceexpand:emacs:hashall:histexpand:history:interactive-comments:monitor

Section 36.29: $_

Outputs the last field from the last command executed, useful to get something to pass onwards to another

command:

~> $ ls *.sh; echo $_

testscript1.sh testscript2.sh

testscript2.sh

It gives the script path if used before any other commands:

test.sh:

 #!/bin/bash

echo "$_"

Output:

~> $. /test.sh # running test.sh

. /test.sh

Note: This is not a foolproof way to get the script path

Section 36.30: $GROUPS

An array containing the numbers of groups the user is in:

 #!/usr/bin/env bash

echo You are assigned to the following groups:

for group in ${GROUPS[@]}; do

IFS=: read -r name dummy number members < <(getent group $group)

printf "name: %-10s number: %-15s members: %s\n" "$name" "$number" "$members"

done

Section 36.31: $LINENO

Outputs the line number in the current script. Mostly useful when debugging scripts.

 #!/bin/bash

 # this is line 2

echo something # this is line 3

echo $LINENO # Will output 4

Section 36.32: $SHLVL

When the bash command is executed a new shell is opened. The $SHLVL environment variable holds the number of

shell levels the current shell is running on top of.

GoalKicker.com – Bash Notes for Professionals

129

In a new terminal window, executing the following command will produce different results based on the Linux distribution in use.

echo $SHLVL

Using Fedora 25, the output is "3". This indicates, that when opening a new shell, an initial bash command executes and performs a task. The initial bash command executes a child process (another bash command) which, in turn,

executes a final bash command to open the new shell. When the new shell opens, it is running as a child process of 2 other shell processes, hence the output of "3".

In the following example (given the user is running Fedora 25), the output of $SHLVL in a new shell will be set to "3".

As each bash command is executed, $SHLVL increments by one.

~> $ echo $SHLVL

3

~> $ bash

~> $ echo $SHLVL

4

~> $ bash

~> $ echo $SHLVL

5

One can see that executing the 'bash' command (or executing a bash script) opens a new shell. In comparison,

sourcing a script runs the code in the current shell.

test1.sh

 #!/usr/bin/env bash

echo "Hello from test1.sh. My shell level is $SHLVL"

source "test2.sh"

test2.sh

 #!/usr/bin/env bash

echo "Hello from test2.sh. My shell level is $SHLVL"

run.sh

 #!/usr/bin/env bash

echo "Hello from run.sh. My shell level is $SHLVL"

. /test1.sh

Execute:

chmod +x test1.sh && chmod +x run.sh

. /run.sh

Output:

Hello from run.sh. My shell level is 4

Hello from test1.sh. My shell level is 5

Hello from test2.sh. My shell level is 5

GoalKicker.com – Bash Notes for Professionals

130

Section 36.33: $UID

A read only variable that stores the users' ID number:

~> $ echo $UID

12345

GoalKicker.com – Bash Notes for Professionals

131

Chapter 37: Job Control

Section 37.1: List background processes

$ jobs

[1] Running sleep 500 & (wd: ~)

[2]- Running sleep 600 & (wd: ~)

[3]+ Running . /Fritzing &

First field shows the job ids. The + and - sign that follows the job id for two jobs denote the default job and next candidate default job when the current default job ends respectively. The default job is used when the fg or bg

commands are used without any argument.

Second field gives the status of the job. Third field is the command used to start the process.

The last field (wd: ~) says that the sleep commands were started from the working directory ~ (Home).

Section 37.2: Bring a background process to the foreground

$ fg %2

sleep 600

%2 specifies job no. 2. If fg is used without any arguments if brings the last process put in background to the

foreground.

$ fg %?sle

sleep 500

?sle refers to the baground process command containing "sle". If multiple background commands contain the string, it will produce an error.

Section 37.3: Restart stopped background process

$ bg

[8]+ sleep 600 &

Section 37.4: Run command in background

$ sleep 500 &

[1] 7582

Puts the sleep command in background. 7582 is the process id of the background process.

Section 37.5: Stop a foreground process

Press Ctrl + Z to stop a foreground process and put it in background

$ sleep 600

^Z

[8]+ Stopped sleep 600

GoalKicker.com – Bash Notes for Professionals

132

Chapter 38: Case statement

Section 38.1: Simple case statement

In its simplest form supported by all versions of bash, case statement executes the case that matches the pattern.

;; operator breaks after the first match, if any.

 #!/bin/bash

var=1

case $var in

1)

echo "Antartica"

;;

2)

echo "Brazil"

;;

3)

echo "Cat"

;;

esac

Outputs:

Antartica

Section 38.2: Case statement with fall through

Version ≥ 4.0

Since bash 4.0, a new operator ; & was introduced which provides fall through mechanism.

#!/bin/bash

var=1

case $var in

1)

echo "Antartica"

; &

2)

echo "Brazil"

; &

3)

echo "Cat"

; &

esac

Outputs:

Antartica

Brazil

Cat

Section 38.3: Fall through only if subsequent pattern(s) match

Version ≥ 4.0

GoalKicker.com – Bash Notes for Professionals

133

Since Bash 4.0, another operator ;;& was introduced which also provides fall through only if the patterns in subsequent case statement(s), if any, match.

 #!/bin/bash

var=abc

case $var in

a*)

echo "Antartica"

;;&

xyz)

echo "Brazil"

;;&

b)

echo "Cat"

;;&

esac

Outputs:

Antartica

Cat

In the below example, the abc matches both first and third case but not the second case. So, second case is not

executed.

GoalKicker.com – Bash Notes for Professionals

134

Chapter 39: Read a file (data stream,

variable) line-by-line (and/or field-by-

field)?

Parameter

Details

IFS

Internal field separator

file

A file name/path

-r

Prevents backslash interpretation when used with read

-t

Removes a trailing newline from each line read by readarray

-d DELIM

Continue until the first character of DELIM is read (with read), rather than newline

Section 39.1: Looping through a file line by line

while IFS= read -r line; do

echo "$line"

done <file

If file may not include a newline at the end, then:

while IFS= read -r line || [-n "$line"]; do

echo "$line"

done <file

Section 39.2: Looping through the output of a command field

by field

Let's assume that the field separator is :

while IFS= read -d : -r field || [-n "$field"]; do

echo "**$field**"

done < <(ping google.com)

Or with a pipe:

ping google.com | while IFS= read -d : -r field || [-n "$field"]; do echo "**$field**"

done

Section 39.3: Read lines of a file into an array

readarray -t arr <file

Or with a loop:

arr=()

while IFS= read -r line; do

arr+=("$line")

done <file

GoalKicker.com – Bash Notes for Professionals

135

Section 39.4: Read lines of a string into an array

var='line 1

line 2

line3'

readarray -t arr <<< "$var"

or with a loop:

arr=()

while IFS= read -r line; do

arr+=("$line")

done <<< "$var"

Section 39.5: Looping through a string line by line

var='line 1

line 2

line3'

while IFS= read -r line; do

echo "-$line-"

done <<< "$var"

or

readarray -t arr <<< "$var"

for i in "${arr[@]}"; do

echo "-$i-"

done

Section 39.6: Looping through the output of a command line

by line

while IFS= read -r line; do

echo "**$line**"

done < <(ping google.com)

or with a pipe:

ping google.com |

while IFS= read -r line; do

echo "**$line**"

done

Section 39.7: Read a file field by field

Let's assume that the field separator is : (colon) in the file file.

while IFS= read -d : -r field || [-n "$field"]; do

echo "$field"

done <file

For a content:

first : se

GoalKicker.com – Bash Notes for Professionals

136

con

d:

Thi rd:

Fourth

The output is:

**first **

** se

con

d**

**

Thi rd**

**

Fourth

**

Section 39.8: Read a string field by field

Let's assume that the field separator is :

var='line: 1

line: 2

line3'

while IFS= read -d : -r field || [-n "$field"]; do

echo "-$field-"

done <<< "$var"

Output:

-line-

- 1

line-

- 2

line3

-

Section 39.9: Read fields of a file into an array

Let's assume that the field separator is :

arr=()

while IFS= read -d : -r field || [-n "$field"]; do

arr+=("$field")

done <file

Section 39.10: Read fields of a string into an array

Let's assume that the field separator is :

var='1:2:3:4:

newline'

arr=()

while IFS= read -d : -r field || [-n "$field"]; do

arr+=("$field")

done <<< "$var"

GoalKicker.com – Bash Notes for Professionals

137

echo "${arr[4]}"

Output:

newline

Section 39.11: Reads file (/etc/passwd) line by line and field by

field

 #!/bin/bash

FILENAME="/etc/passwd"

while IFS=: read -r username password userid groupid comment homedir cmdshell

do

echo "$username, $userid, $comment $homedir"

done < $FILENAME

In unix password file, user information is stored line by line, each line consisting of information for a user separated by colon (:) character. In this example while reading the file line by line, the line is also split into fields using colon character as delimiter which is indicated by the value given for IFS.

Sample input

mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash

pulse:x:497:495:PulseAudio System Daemon:/var/run/pulse:/sbin/nologin

sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin

tomcat:x:91:91:Apache Tomcat:/usr/share/tomcat6:/sbin/nologin

webalizer:x:67:67:Webalizer:/var/www/usage:/sbin/nologin

Sample Output

mysql, 27, MySQL Server /var/lib/mysql

pulse, 497, PulseAudio System Daemon /var/run/pulse

sshd, 74, Privilege-separated SSH /var/empty/sshd

tomcat, 91, Apache Tomcat /usr/share/tomcat6

webalizer, 67, Webalizer /var/www/usage

To read line by line and have the entire line assigned to variable, following is a modified version of the example.

Note that we have only one variable by name line mentioned here.

 #!/bin/bash

FILENAME="/etc/passwd"

while IFS= read -r line

do

echo "$line"

done < $FILENAME

Sample Input

mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash

pulse:x:497:495:PulseAudio System Daemon:/var/run/pulse:/sbin/nologin

sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin

tomcat:x:91:91:Apache Tomcat:/usr/share/tomcat6:/sbin/nologin

webalizer:x:67:67:Webalizer:/var/www/usage:/sbin/nologin

Sample Output

GoalKicker.com – Bash Notes for Professionals

138

mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash

pulse:x:497:495:PulseAudio System Daemon:/var/run/pulse:/sbin/nologin

sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin

tomcat:x:91:91:Apache Tomcat:/usr/share/tomcat6:/sbin/nologin

webalizer:x:67:67:Webalizer:/var/www/usage:/sbin/nologin

GoalKicker.com – Bash Notes for Professionals

139

Chapter 40: File execution sequence

.bash_profile, .bash_login, .bashrc, and .profile all do pretty much the same thing: set up and define

functions, variables, and the sorts.

The main difference is that .bashrc is called at the opening of a non-login but interactive window, and

.bash_profile and the others are called for a login shell. Many people have their .bash_profile or similar call

.bashrc anyway.

Section 40.1: .profile vs .bash_profile (and .bash_login)

.profile is read by most shells on startup, including bash. However, .bash_profile is used for configurations

specific to bash. For general initialization code, put it in .profile. If it's specific to bash, use .bash_profile.

.profile isn't actually designed for bash specifically, .bash_profile is though instead. (.profile is for Bourne and other similar shells, which bash is based off) Bash will fall back to .profile if .bash_profile isn't found.

.bash_login is a fallback for .bash_profile, if it isn't found. Generally best to use .bash_profile or .profile

instead.

GoalKicker.com – Bash Notes for Professionals

140

Chapter 41: Splitting Files

Sometimes it's useful to split a file into multiple separate files. If you have large files, it might be a good idea to break it into smaller chunks

Section 41.1: Split a file

Running the split command without any options will split a file into 1 or more separate files containing up to 1000

lines each.

split file

This will create files named xaa, xab, xac, etc, each containing up to 1000 lines. As you can see, all of them are prefixed with the letter x by default. If the initial file was less than 1000 lines, only one such file would be created.

To change the prefix, add your desired prefix to the end of the command line

split file customprefix

Now files named customprefixaa, customprefixab, customprefixac etc. will be created

To specify the number of lines to output per file, use the -l option. The following will split a file into a maximum of 5000 lines

split -l5000 file

OR

split --lines=5000 file

Alternatively, you can specify a maximum number of bytes instead of lines. This is done by using the -b or --bytes options. For example, to allow a maximum of 1MB

split --bytes=1MB file

GoalKicker.com – Bash Notes for Professionals

141

Chapter 42: File Transfer using scp

Section 42.1: scp transferring file

To transfer a file securely to another machine - type:

scp file1.txt tom@server2:$HOME

This example presents transferring file1.txt from our host to server2's user tom's home directory.

Section 42.2: scp transferring multiple files

scp can also be used to transfer multiple files from one server to another. Below is example of transferring all files from my_folder directory with extension .txt to server2. In Below example all files will be transferred to user tom home directory.

scp /my_folder/*.txt tom@server2:$HOME

Section 42.3: Downloading file using scp

To download a file from remote server to the local machine - type:

scp tom@server2:$HOME/file.txt /local/machine/path/

This example shows how to download the file named file.txt from user tom's home directory to our local

machine's current directory.

GoalKicker.com – Bash Notes for Professionals

142

Chapter 43: Pipelines

Section 43.1: Using |&

|& connects standard output and standard error of the first command to the second one while | only connects standard output of the first command to the second command.

In this example, the page is downloaded via curl. with -v option curl writes some info on stderr including , the downloaded page is written on stdout. Title of page can be found between <title> and </title> .

curl -vs 'http://www.google.com/' |& awk '/Host:/{print}

/<title>/{match($0,/<title>(.*)<\/title>/,a);print a[1]}'

Output is:

> Host: www.google.com

Google

But with | a lot more information will be printed, i.e. those that are sent to stderr because only stdout is piped to the next command. In this example all lines except the last line (Google) were sent to stderr by curl:

* Hostname was NOT found in DNS cache

* Trying 172.217.20.228...

* Connected to www.google.com (172.217.20.228) port 80 (#0)

> GET / HTTP/1.1

> User-Agent: curl/7.35.0

> Host: www.google.com

> Accept: */*

>

* HTTP 1.0, assume close after body

< HTTP/1.0 200 OK

< Date: Sun, 24 Jul 2016 19:04:59 GMT

< Expires: -1

< Cache-Control: private, max-age=0

< Content-Type: text/html; charset=ISO-8859-1

< P3P: CP="This is not a P3P policy! See

https://www.google.com/support/accounts/answer/151657?hl=en for more info."

< Server: gws

< X-XSS-Protection: 1; mode=block

< X-Frame-Options: SAMEORIGIN

< Set-Cookie: NID=82=jX0yZLPPUE7u13kKNevUCDg8yG9Ze_C03o0IM-

EopOSKL0mMITEagIE816G55L2wrTlQwgXkhq4ApFvvYEoaWF-

oEoq2T0sBTuQVdsIFULj9b2O8X35O0sAgUnc3a3JnTRBqelMcuS9QkQA; expires=Mon, 23-Jan-2017 19:04:59 GMT;

path=/; domain=.google.com; HttpOnly

< Accept-Ranges: none

< Vary: Accept-Encoding

< X-Cache: MISS from jetsib_appliance

< X-Loop-Control: 5.202.190.157 81E4F9836653D5812995BA53992F8065

< Connection: close

<

{ [data not shown]

* Closing connection 0

Google

GoalKicker.com – Bash Notes for Professionals

143

Section 43.2: Show all processes paginated

ps -e | less

ps -e shows all the processes, its output is connected to the input of more via |, less paginates the results.

Section 43.3: Modify continuous output of a command

~$ ping -c 1 google.com # unmodified output

PING google.com (16.58.209.174) 56(84) bytes of data.

64 bytes from wk-in-f100.1e100.net (16.58.209.174): icmp_seq=1 ttl=53 time=47.4 ms

~$ ping google.com | grep -o '^[0-9]\+[^()]\+' # modified output

64 bytes from wk-in-f100.1e100.net

64 bytes from wk-in-f100.1e100.net

64 bytes from wk-in-f100.1e100.net

64 bytes from wk-in-f100.1e100.net

64 bytes from wk-in-f100.1e100.net

64 bytes from wk-in-f100.1e100.net

64 bytes from wk-in-f100.1e100.net

64 bytes from wk-in-f100.1e100.net

64 bytes from wk-in-f100.1e100.net

64 bytes from wk-in-f100.1e100.net

...

The pipe (|) connects the stdout of ping to the stdin of grep, which processes it immediately. Some other commands like sed default to buffering their stdin, which means that it has to receive enough data, before it will print anything, potentially causing delays in further processing.

GoalKicker.com – Bash Notes for Professionals

144

Chapter 44: Managing PATH environment

variable

Parameter

Details

PATH

Path environment variable

Section 44.1: Add a path to the PATH environment variable

The PATH environment variable is generally defined in ~/.bashrc or ~/.bash_profile or /etc/profile or ~/.profile or

/etc/bash.bashrc (distro specific Bash configuration file)

$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:

/usr/lib/jvm/jdk1.8.0_92/bin:/usr/lib/jvm/jdk1.8.0_92/db/bin:/usr/lib/jvm/jdk1.8.0_92/jre/bin Now, if we want to add a path (e.g ~/bin) to the PATH variable:

PATH=~/bin:$PATH

 # or

PATH=$PATH:~/bin

But this will modify the PATH only in the current shell (and its subshell). Once you exit the shell, this modification will be gone.

To make it permanent, we need to add that bit of code to the ~/.bashrc (or whatever) file and reload the file.

If you run the following code (in terminal), it will add ~/bin to the PATH permanently:

echo 'PATH=~/bin:$PATH' >> ~/.bashrc && source ~/.bashrc Explanation:

echo 'PATH=~/bin:$PATH' >> ~/.bashrc adds the line PATH=~/bin:$PATH at the end of ~/.bashrc file (you could do it with a text editor)

source ~/.bashrc reloads the ~/.bashrc file

This is a bit of code (run in terminal) that will check if a path is already included and add the path only if not: path=~/bin # path to be included

bashrc=~/.bashrc # bash file to be written and reloaded

 # run the following code unmodified

echo $PATH | grep -q "\(^\|:\)$path\(:\|/\{0,1\}$\)" || echo "PATH=\$PATH:$path" >> "$bashrc"; source "$bashrc"

Section 44.2: Remove a path from the PATH environment

variable

To remove a PATH from a PATH environment variable, you need to edit ~/.bashrc or ~/.bash_profile or /etc/profile or ~/.profile or /etc/bash.bashrc (distro specific) file and remove the assignment for that particular path.

Instead of finding the exact assignment, you could just do a replacement in the $PATH in its final stage.

The following will safely remove $path from $PATH:

GoalKicker.com – Bash Notes for Professionals

145

path=~/bin

PATH="$(echo "$PATH" |sed -e "s#\(^\|:\)$(echo "$path" |sed -e 's/[^^]/[&]/g' -e

's/\^/\\^/g')\(:\|/\{0,1\}$\)#\1\2#" -e 's#:\+#:#g' -e 's#^:\|:$##g')"

To make it permanent, you will need to add it at the end of your bash configuration file.

You can do it in a functional way:

rpath(){

for path in "$@"; do

PATH="$(echo "$PATH" |sed -e "s#\(^\|:\)$(echo "$path" |sed -e 's/[^^]/[&]/g' -e

's/\^/\\^/g')\(:\|/\{0,1\}$\)#\1\2#" -e 's#:\+#:#g' -e 's#^:\|:$##g')"

done

echo "$PATH"

}

PATH="$(rpath ~/bin /usr/local/sbin /usr/local/bin)"

PATH="$(rpath /usr/games)"

etc ...

This will make it easier to handle multiple paths.

Notes:

You will need to add these codes in the Bash configuration file (~/.bashrc or whatever).

Run source ~/.bashrc to reload the Bash configuration (~/.bashrc) file.

GoalKicker.com – Bash Notes for Professionals

146

Chapter 45: Word splitting

Parameter

Details

IFS

Internal field separator

-x

Print commands and their arguments as they are executed (Shell option)

Section 45.1: What, when and Why?

When the shell performs parameter expansion, command substitution, variable or arithmetic expansion, it scans for word boundaries in the result. If any word boundary is found, then the result is split into multiple words at that position. The word boundary is defined by a shell variable IFS (Internal Field Separator). The default value for IFS

are space, tab and newline, i.e. word splitting will occur on these three white space characters if not prevented explicitly.

set -x

var='I am

a

multiline string'

fun() {

echo "-$1-"

echo "*$2*"

echo ".$3."

}

fun $var

In the above example this is how the fun function is being executed:

fun I am a multiline string

$var is split into 5 args, only I, am and a will be printed.

Section 45.2: Bad eects of word splitting

$ a='I am a string with spaces'

$ [$a = $a] || echo "didn't match"

bash: [: too many arguments

didn't match

[$a = $a] was interpreted as [I am a string with spaces = I am a string with spaces]. [is the test command for which I am a string with spaces is not a single argument, rather it's 6

arguments!!

$ [$a = something] || echo "didn't match"

bash: [: too many arguments

didn't match

[$a = something] was interpreted as [I am a string with spaces = something]

$ [$(grep . file) = 'something']

GoalKicker.com – Bash Notes for Professionals

147

bash: [: too many arguments

The grep command returns a multiline string with spaces, so you can just imagine how many arguments

are there...:D

 See what, when and why for the basics.

Section 45.3: Usefulness of word splitting

There are some cases where word splitting can be useful:

 Filling up array:

arr=($(grep -o '[0-9]\+' file))

This will fill up arr with all numeric values found in file

 Looping through space separated words:

words='foo bar baz'

for w in $words; do

echo "W: $w"

done

Output:

W: foo

W: bar

W: baz

 Passing space separated parameters which don't contain white spaces:

packs='apache2 php php-mbstring php-mysql'

sudo apt-get install $packs

or

packs='

apache2

php

php-mbstring

php-mysql

'

sudo apt-get install $packs

This will install the packages. If you double quote the $packs then it will throw an error.

Unquoetd $packs is sending all the space separated package names as arguments to apt-get, while

quoting it will send the $packs string as a single argument and then apt-get will try to install a package named apache2 php php-mbstring php-mysql (for the first one) which obviously doesn't exist

GoalKicker.com – Bash Notes for Professionals

148

 See what, when and why for the basics.

Section 45.4: Splitting by separator changes

We can just do simple replacement of separators from space to new line, as following example.

echo $sentence | tr " " " \n"

It'll split the value of the variable sentence and show it line by line respectively.

Section 45.5: Splitting with IFS

To be more clear, let's create a script named showarg:

 #!/usr/bin/env bash

printf "%d args:" $#

printf " <%s>" "$@"

echo

Now let's see the differences:

$ var="This is an example"

$ showarg $var

4 args: < This> < is> < an> < example> $var is split into 4 args. IFS is white space characters and thus word splitting occurred in spaces

$ var="This/is/an/example"

$ showarg $var

1 args: < This/is/an/example>

In above word splitting didn't occur because the IFS characters weren't found.

Now let's set IFS=/

$ IFS=/

$ var="This/is/an/example"

$ showarg $var

4 args: < This> < is> < an> < example> The $var is splitting into 4 arguments not a single argument.

Section 45.6: IFS & word splitting

 See what, when and why if you don't know about the affiliation of IFS to word splitting

let's set the IFS to space character only:

set -x

var='I am

GoalKicker.com – Bash Notes for Professionals

149

a

multiline string'

IFS=' '

fun() {

echo "-$1-"

echo "*$2*"

echo ".$3."

}

fun $var

This time word splitting will only work on spaces. The fun function will be executed like this:

fun I 'am

a

multiline' string

$var is split into 3 args. I, am\na\nmultiline and string will be printed

Let's set the IFS to newline only:

IFS=$'\n'

...

Now the fun will be executed like:

fun 'I am' a 'multiline string'

$var is split into 3 args. I am, a, multiline string will be printed

Let's see what happens if we set IFS to nullstring:

IFS=

...

This time the fun will be executed like this:

fun 'I am

a

multiline string'

$var is not split i.e it remained a single arg.

You can prevent word splitting by setting the IFS to nullstring

A general way of preventing word splitting is to use double quote:

fun "$var"

will prevent word splitting in all the cases discussed above i.e the fun function will be executed with only one argument.

GoalKicker.com – Bash Notes for Professionals

150

Chapter 46: Avoiding date using printf

In Bash 4.2, a shell built-in time conversion for printf was introduced: the format specification %(datefmt)T makes printf output the date-time string corresponding to the format string datefmt as understood by strftime.

Section 46.1: Get the current date

$ printf '%(%F)T\n'

2016-08-17

Section 46.2: Set variable to current time

$ printf -v now '%(%T)T'

$ echo "$now"

12:42:47

GoalKicker.com – Bash Notes for Professionals

151

Chapter 47: Using "trap" to react to

signals and system events

Parameter

Meaning

-p

List currently installed traps

-l

List signal names and corresponding numbers

Section 47.1: Introduction: clean up temporary files

You can use the trap command to "trap" signals; this is the shell equivalent of the signal() or sigaction() call in C

and most other programming languages to catch signals.

One of the most common uses of trap is to clean up temporary files on both an expected and unexpected exit.

Unfortunately not enough shell scripts do this :-(

 #!/bin/sh

 # Make a cleanup function

cleanup() {

rm --force -- "${tmp}"

}

 # Trap the special "EXIT" group, which is always run when the shell exits.

trap cleanup EXIT

 # Create a temporary file

tmp="$(mktemp -p /tmp tmpfileXXXXXXX)"

echo "Hello, world!" >> "${tmp}"

 # No rm -f "$tmp" needed. The advantage of using EXIT is that it still works

 # even if there was an error or if you used exit.

Section 47.2: Catching SIGINT or Ctl+C

The trap is reset for subshells, so the sleep will still act on the SIGINT signal sent by ^C (usually by quitting), but the parent process (i.e. the shell script) won't.

 #!/bin/sh

 # Run a command on signal 2 (SIGINT, which is what ^C sends)

sigint() {

echo "Killed subshell!"

}

trap sigint INT

 # Or use the no-op command for no output

 #trap : INT

 # This will be killed on the first ^C

echo "Sleeping..."

sleep 500

echo "Sleeping..."

sleep 500

GoalKicker.com – Bash Notes for Professionals

152

And a variant which still allows you to quit the main program by pressing ^C twice in a second:

last=0

allow_quit() {

[$(date +%s) -lt $(($last + 1))] && exit echo "Press ^C twice in a row to quit"

last=$(date +%s)

}

trap allow_quit INT

Section 47.3: Accumulate a list of trap work to run at exit

Have you ever forgotten to add a trap to clean up a temporary file or do other work at exit?

Have you ever set one trap which canceled another?

This code makes it easy to add things to be done on exit one item at a time, rather than having one large trap statement somewhere in your code, which may be easy to forget.

 # on_exit and add_on_exit

 # Usage:

 # add_on_exit rm -f /tmp/foo

 # add_on_exit echo "I am exiting"

 # tempfile=$(mktemp)

 # add_on_exit rm -f "$tempfile"

 # Based on http://www.linuxjournal.com/content/use-bash-trap-statement-cleanup-temporary-files

function on_exit()

{

for i in "${on_exit_items[@]}"

do

eval $i

done

}

function add_on_exit()

{

local n=${#on_exit_items[*]}

on_exit_items[$n]="$*"

if [[$n -eq 0]]; then

trap on_exit EXIT

fi

}

Section 47.4: Killing Child Processes on Exit

Trap expressions don't have to be individual functions or programs, they can be more complex expressions as well.

By combining jobs -p and kill, we can kill all spawned child processes of the shell on exit:

trap 'jobs -p | xargs kill' EXIT

Section 47.5: react on change of terminals window size

There is a signal WINCH (WINdowCHange), which is fired when one resizes a terminal window.

declare -x rows cols

update_size(){

GoalKicker.com – Bash Notes for Professionals

153

 rows=$(tput lines) # get actual lines of term

cols=$(tput cols) # get actual columns of term

echo DEBUG terminal window has no $rows lines and is $cols characters wide

}

trap update_size WINCH

GoalKicker.com – Bash Notes for Professionals

154

Chapter 48: Chain of commands and

operations

There are some means to chain commands together. Simple ones like just a ; or more complex ones like logical

chains which run depending on some conditions. The third one is piping commands, which effectively hands over

the output data to the next command in the chain.

Section 48.1: Counting a text pattern ocurrence

Using a pipe makes the output of a command be the input of the next one.

ls -1 | grep -c ".conf"

In this case the output of the ls command is used as the input of the grep command. The result will be the number of files that include ".conf" in their name.

This can be used to contruct chains of subsequent commands as long as needed:

ls -1 | grep ".conf" | grep -c .

Section 48.2: transfer root cmd output to user file

Often one want to show the result of a command executed by root to other users. The tee command allows easily to write a file with user perms from a command running as root:

su -c ifconfig | tee ~/results-of-ifconfig.txt

Only ifconfig runs as root.

Section 48.3: logical chaining of commands with && and ||

&& chains two commands. The second one runs only if the first one exits with success. || chains two commands.

But second one runs only if first one exits with failure.

[a = b] && echo "yes" || echo "no"

 # if you want to run more commands within a logical chain, use curly braces

 # which designate a block of commands

 # They do need a ; before closing bracket so bash can diffentiate from other uses

 # of curly braces

[a = b] && { echo "let me see."

echo "hmmm, yes, i think it is true" ; } \

|| { echo "as i am in the negation i think "

echo "this is false. a is a not b." ; }

 # mind the use of line continuation sign \

 # only needed to chain yes block with ||

Section 48.4: serial chaining of commands with semicolon

A semicolon separates just two commands.

echo "i am first" ; echo "i am second" ; echo " i am third"

GoalKicker.com – Bash Notes for Professionals

155

Section 48.5: chaining commands with |

The | takes the output of the left command and pipes it as input the right command. Mind, that this is done in a subshell. Hence you cannot set values of vars of the calling process within a pipe.

find . -type f -a -iname '*.mp3' | \

while read filename; do

mute --noise "$filename"

done

GoalKicker.com – Bash Notes for Professionals

156

Chapter 49: Type of Shells

Section 49.1: Start an interactive shell

bash

Section 49.2: Detect type of shell

shopt -q login_shell && echo 'login' || echo 'not-login'

Section 49.3: Introduction to dot files

In Unix, files and directories beginning with a period usually contain settings for a specific program/a series of programs. Dot files are usually hidden from the user, so you would need to run ls -a to see them.

An example of a dot file is .bash_history, which contains the latest executed commands, assuming the user is

using Bash.

There are various files that are sourced when you are dropped into the Bash shell. The image below, taken from

this site, shows the decision process behind choosing which files to source at startup.

GoalKicker.com – Bash Notes for Professionals

157

GoalKicker.com – Bash Notes for Professionals

158

Chapter 50: Color script output (cross-

platform)

Section 50.1: color-output.sh

In the opening section of a bash script, it's possible to define some variables that function as helpers to color or otherwise format the terminal output during the run of the script.

Different platforms use different character sequences to express color. However, there's a utility called tput which works on all *nix systems and returns platform-specific terminal coloring strings via a consistent cross-platform API.

For example, to store the character sequence which turns the terminal text red or green:

red=$(tput setaf 1)

green=$(tput setaf 2)

Or, to store the character sequence which resets the text to default appearance:

reset=$(tput sgr0)

Then, if the BASH script needed to show different colored outputs, this can be achieved with:

cho "${green}Success!${reset}" echo "${red}Failure.${reset}"

GoalKicker.com – Bash Notes for Professionals

159

Chapter 51: co-processes

Section 51.1: Hello World

 # create the co-process

coproc bash

 # send a command to it (echo a)

echo 'echo Hello World' >& "${COPROC[1]}"

 # read a line from its output

read line <& "${COPROC[0]}"

 # show the line

echo "$line"

The output is "Hello World".

GoalKicker.com – Bash Notes for Professionals

160

Chapter 52: Typing variables

Section 52.1: declare weakly typed variables

declare is an internal command of bash. (internal command use help for displaying "manpage"). It is used to show and define variables or show function bodies.

Syntax: declare [options] [name[=value]]...

 # options are used to define

 # an integer

declare -i myInteger

declare -i anotherInt=10

 # an array with values

declare -a anArray=(one two three)

 # an assoc Array

declare -A assocArray=([element1]="something" [second]=anotherthing)

 # note that bash recognizes the string context within []

 # some modifiers exist

 # uppercase content

declare -u big='this will be uppercase'

 # same for lower case

declare -l small='THIS WILL BE LOWERCASE'

 # readonly array

declare -ra constarray=(eternal true and unchangeable)

 # export integer to environment

declare -xi importantInt=42

You can use also the + which takes away the given attribute. Mostly useless, just for completness.

To display variables and/or functions there are some options too

 # printing definded vars and functions

declare -f

 # restrict output to functions only

declare -F # if debugging prints line number and filename defined in too

GoalKicker.com – Bash Notes for Professionals

161

Chapter 53: Jobs at specific times

Section 53.1: Execute job once at specific time

 Note: at is not installed by default on most of modern distributions.

To execute a job once at some other time than now, in this example 5pm, you can use

echo "somecommand &" | at 5pm

If you want to catch the output, you can do that in the usual way:

echo "somecommand > out.txt 2>err.txt &" | at 5pm

at understands many time formats, so you can also say

echo "somecommand &" | at now + 2 minutes

echo "somecommand &" | at 17:00

echo "somecommand &" | at 17:00 Jul 7

echo "somecommand &" | at 4pm 12.03.17

If no year or date are given, it assumes the next time the time you specified occurs. So if you give a hour that already passed today, it will assume tomorrow, and if you give a month that already passed this year, it will assume next year.

This also works together with nohup like you would expect.

echo "nohup somecommand > out.txt 2>err.txt &" | at 5pm

There are some more commands to control timed jobs:

atq lists all timed jobs (atqueue)

atrm removes a timed job (atremove)

batch does basically the same like at, but runs jobs only when system load is lower than 0.8

All commands apply to jobs of the user logged in. If logged in as root, system wide jobs are handled of course.

Section 53.2: Doing jobs at specified times repeatedly using

systemd.timer

systemd provides a modern implementation of cron. To execute a script periodical a service and a timer file ist needed. The service and timer files should be placed in /etc/systemd/{system,user}. The service file:

[Unit]

Description=my script or programm does the very best and this is the description

[Service]

 # type is important!

Type=simple

 # program|script to call. Always use absolute pathes

 # and redirect STDIN and STDERR as there is no terminal while being executed

ExecStart=/absolute/path/to/someCommand >>/path/to/output 2>/path/to/STDERRoutput

 #NO install section!!!! Is handled by the timer facitlities itself.

 #[Install]

GoalKicker.com – Bash Notes for Professionals

162

 #WantedBy=multi-user.target

Next the timer file:

[Unit]

Description=my very first systemd timer

[Timer]

 # Syntax for date/time specifications is Y-m-d H:M:S

 # a * means "each", and a comma separated list of items can be given too

 # *-*-* *,15,30,45:00 says every year, every month, every day, each hour,

 # at minute 15,30,45 and zero seconds

OnCalendar=*-*-* *:01:00

 # this one runs each hour at one minute zero second e.g. 13:01:00

GoalKicker.com – Bash Notes for Professionals

163

Chapter 54: Handling the system prompt

Escape

Details

\a

A bell character.

\d

The date, in "Weekday Month Date" format (e.g., "Tue May 26").

\D{FORMAT} The FORMAT is passed tòstrftime'(3) and the result is inserted into the prompt string; an empty

FORMAT results in a locale-specific time representation. The braces are required.

\e

An escape character. \033 works of course too.

\h

The hostname, up to the first `.'. (i.e. no domain part)

\H

The hostname eventually with domain part

\j

The number of jobs currently managed by the shell.

\l

The basename of the shell's terminal device name.

\n

A newline.

\r

A carriage return.

\s

The name of the shell, the basename of `$0' (the portion following the final slash).

\t

The time, in 24-hour HH:MM:SS format.

\T

The time, in 12-hour HH:MM:SS format.

@

The time, in 12-hour am/pm format.

\A

The time, in 24-hour HH:MM format.

\u

The username of the current user.

\v

The version of Bash (e.g., 2.00)

\V

The release of Bash, version + patchlevel (e.g., 2.00.0)

\w

The current working directory, with $HOME abbreviated with a tilde (uses the $PROMPT_DIRTRIM

variable).

\W

The basename of $PWD, with $HOME abbreviated with a tilde.

!

The history number of this command.

#

The command number of this command.

$

If the effective uid is 0, #, otherwise $.

\NNN

The character whose ASCII code is the octal value NNN.

\

A backslash.

\[

Begin a sequence of non-printing characters. This could be used to embed a terminal control

sequence into the prompt.

\]

End a sequence of non-printing characters.

Section 54.1: Using the PROMPT_COMMAND envrionment

variable

When the last command in an interactive bash instance is done, the evaluated PS1 variable is displayes. Before

actually displaying PS1 bash looks whether the PROMPT_COMMAND is set. This value of this var must be a callable

program or script. If this var is set this program/script is called BEFORE the PS1 prompt is displayed.

 # just a stupid function, we will use to demonstrate

 # we check the date if Hour is 12 and Minute is lower than 59

lunchbreak(){

if (($(date +%H) == 12 && $(date +%M) < 59)); then

 # and print colored \033[starts the escape sequence

 # 5; is blinking attribute

 # 2; means bold

 # 31 says red

GoalKicker.com – Bash Notes for Professionals

164

 printf "\033[5;1;31mmind the lunch break\033[0m\n";

else

printf "\033[33mstill working...\033[0m\n";

fi;

}

 # activating it

export PROMPT_COMMAND=lunchbreak

Section 54.2: Using PS2

PS2 is displayed when a command extends to more than one line and bash awaits more keystrokes. It is displayed

too when a compound command like while...do..done and alike is entered.

export PS2="would you please complete this command? \n"

 # now enter a command extending to at least two lines to see PS2

Section 54.3: Using PS3

When the select statement is executed, it displays the given items prefixed with a number and then displays the

PS3 prompt:

export PS3=" To choose your language type the preceding number : "

select lang in EN CA FR DE; do

 # check input here until valid.

break

done

Section 54.4: Using PS4

PS4 is displayes when bash is in debugging mode.

 #!/usr/bin/env bash

 # switch on debugging

set -x

 # define a stupid_func

stupid_func(){

echo I am line 1 of stupid_func

echo I am line 2 of stupid_func

}

 # setting the PS4 "DEBUG" prompt

export PS4='\nDEBUG level:$SHLVL subshell-level: $BASH_SUBSHELL \nsource-file:${BASH_SOURCE}

line#:${LINENO} function:${FUNCNAME[0]:+${FUNCNAME[0]}(): }\nstatement: '

 # a normal statement

echo something

 # function call

stupid_func

 # a pipeline of commands running in a subshell

(ls -l | grep 'x')

GoalKicker.com – Bash Notes for Professionals

165

Section 54.5: Using PS1

PS1 is the normal system prompt indicating that bash waits for commands being typed in. It understands some

escape sequences and can execute functions or progams. As bash has to position the cursor after the displayes

prompt, it needs to know how to calculate the effective length of the prompt string. To indicate non printing

sequences of chars within the PS1 variable escaped braces are used: \[a non printing sequence of chars \]. All being said holds true for all PS* vars.

(The black caret indicates cursor)

 #everything not being an escape sequence will be literally printed

export PS1="literal sequence " # Prompt is now:

literal sequence ▉

 # \u == user \h == host \w == actual working directory

 # mind the single quotes avoiding interpretation by shell

export PS1='\u@\h:\w > ' # \u == user, \h == host, \w actual working dir

looser@host:/some/path > ▉

 # executing some commands within PS1

 # following line will set foreground color to red, if user==root,

 # else it resets attributes to default

 # $((($EUID == 0)) && tput setaf 1)

 # later we do reset attributes to default with

 # $(tput sgr0)

 # assuming being root:

PS1="\[$((($EUID == 0)) && tput setaf 1 \]\u\[$(tput sgr0)\]@\w:\w \$ "

looser@host:/some/path > ▉ # if not root else <red>root<default>@host....

GoalKicker.com – Bash Notes for Professionals

166

Chapter 55: The cut command

Parameter

Details

-f, --fields

Field-based selection

-d, --delimiter

Delimiter for field-based selection

-c, --characters

Character-based selection, delimiter ignored or error

-s, --only-delimited Suppress lines with no delimiter characters (printed as-is otherwise)

--complement

Inverted selection (extract all except specified fields/characters

--output-delimiter Specify when it has to be different from the input delimiter

The cut command is a fast way to extract parts of lines of text files. It belongs to the oldest Unix commands. Its most popular implementations are the GNU version found on Linux and the FreeBSD version found on MacOS, but

each flavor of Unix has its own. See below for differences. The input lines are read either from stdin or from files listed as arguments on the command line.

Section 55.1: Only one delimiter character

You cannot have more than one delimiter: if you specify something like -d ",;:", some implementations will use only the first character as a delimiter (in this case, the comma.) Other implementations (e.g. GNU cut) will give you an error message.

$ cut -d ",;:" -f2 <<< "J.Smith,1 Main Road,cell:1234567890;land:4081234567"

cut: the delimiter must be a single character

Try `cut --help' for more information.

Section 55.2: Repeated delimiters are interpreted as empty

fields

$ cut -d, -f1,3 <<< "a,,b,c,d,e"

a,b

is rather obvious, but with space-delimited strings it might be less obvious to some

$ cut -d ' ' -f1,3 <<< "a b c d e"

a b

cut cannot be used to parse arguments as the shell and other programs do.

Section 55.3: No quoting

There is no way to protect the delimiter. Spreadsheets and similar CSV-handling software usually can recognize a text-quoting character which makes it possible to define strings containing a delimiter. With cut you cannot.

$ cut -d, -f3 <<< 'John,Smith,"1, Main Street"'

"1

Section 55.4: Extracting, not manipulating

You can only extract portions of lines, not reorder or repeat fields.

$ cut -d, -f2,1 <<< 'John,Smith,USA' ## Just like -f1,2

GoalKicker.com – Bash Notes for Professionals

167

John,Smith

$ cut -d, -f2,2 <<< 'John,Smith,USA' ## Just like -f2

Smith

GoalKicker.com – Bash Notes for Professionals

168

Chapter 56: Bash on Windows 10

Section 56.1: Readme

The simpler way to use Bash in Windows is to install Git for Windows. It's shipped with Git Bash which is a real Bash.

You can access it with shortcut in :

Start > All Programs > Git > Git Bash

Commands like grep, ls, find, sed, vi etc is working.

GoalKicker.com – Bash Notes for Professionals

169

Chapter 57: Cut Command

Option

Description

-b LIST, --bytes=LIST

Print the bytes listed in the LIST parameter

-c LIST, --characters=LIST Print characters in positions specified in LIST parameter

-f LIST, --fields=LIST

Print fields or columns

-d DELIMITER

Used to separate columns or fields

In Bash, the cut command is useful for dividing a file into several smaller parts.

Section 57.1: Show the first column of a file

Suppose you have a file that looks like this

John Smith 31

Robert Jones 27

...

This file has 3 columns separated by spaces. To select only the first column, do the following.

cut -d ' ' -f1 filename

Here the -d flag, specifies the delimiter, or what separates the records. The -f flag specifies the field or column number. This will display the following output

John

Robert

...

Section 57.2: Show columns x to y of a file

Sometimes, it's useful to display a range of columns in a file. Suppose you have this file

Apple California 2017 1.00 47

Mango Oregon 2015 2.30 33

To select the first 3 columns do

cut -d ' ' -f1-3 filename

This will display the following output

Apple California 2017

Mango Oregon 2015

GoalKicker.com – Bash Notes for Professionals

170

Chapter 58: global and local variables

By default, every variable in bash is global to every function, script and even the outside shell if you are declaring your variables inside a script.

If you want your variable to be local to a function, you can use local to have that variable a new variable that is independent to the global scope and whose value will only be accessible inside that function.

Section 58.1: Global variables

var="hello"

function foo(){

echo $var

}

foo

Will obviously output "hello", but this works the other way around too:

function foo() {

var="hello"

}

foo

echo $var

Will also output "hello"

Section 58.2: Local variables

function foo() {

local var

var="hello"

}

foo

echo $var

Will output nothing, as var is a variable local to the function foo, and its value is not visible from outside of it.

Section 58.3: Mixing the two together

var="hello"

function foo(){

local var="sup?"

echo "inside function, var=$var"

}

foo

echo "outside function, var=$var"

Will output

GoalKicker.com – Bash Notes for Professionals

171

inside function, var=sup?

outside function, var=hello

GoalKicker.com – Bash Notes for Professionals

172

Chapter 59: CGI Scripts

Section 59.1: Request Method: GET

It is quite easy to call a CGI-Script via GET.

First you will need the encoded url of the script.

Then you add a question mark ? followed by variables.

Every variable should have two sections separated by =.

First section should be always a unique name for each variable,

while the second part has values in it only

Variables are separated by &

Total length of the string should not rise above 255 characters

Names and values needs to be html-encoded (replace: </ , / ? : @ & = + $)

Hint:

When using html-forms the request method can be generated by it self.

With Ajax you can encode all via encodeURI and encodeURIComponent

Example:

http://www.example.com/cgi-bin/script.sh?var1=Hello%20World!& var2=This%20is%20a%20Test. & The server should communicate via Cross-Origin Resource Sharing (CORS) only, to make request more secure. In this showcase we use CORS to determine the Data-Type we want to use.

There are many Data-Types we can choose from, the most common are...

text/html

text/plain

application/json

When sending a request, the server will also create many environment variables. For now the most important

environment variables are $REQUEST_METHOD and $QUERY_STRING.

The Request Method has to be GET nothing else!

The Query String includes all the html-endoded data.

The Script

 #!/bin/bash

 # CORS is the way to communicate, so lets response to the server first

echo "Content-type: text/html" # set the data-type we want to use

echo "" # we don't need more rules, the empty line initiate this.

 # CORS are set in stone and any communication from now on will be like reading a html-document.

 # Therefor we need to create any stdout in html format!

 # create html scructure and send it to stdout

echo "<!DOCTYPE html>"

echo "<html><head>"

 # The content will be created depending on the Request Method

if ["$REQUEST_METHOD" = "GET"]; then

GoalKicker.com – Bash Notes for Professionals

173

 # Note that the environment variables $REQUEST_METHOD and $QUERY_STRING can be processed by the

 shell directly.

 # One must filter the input to avoid cross site scripting.

Var1=$(echo "$QUERY_STRING" | sed -n 's/^.*var1=\([^&]*\).*$/\1/p') # read value of "var1"

Var1_Dec=$(echo -e $(echo "$Var1" | sed 's/+/ /g;s/%\(..\)/\\x\1/g;')) # html decode Var2=$(echo "$QUERY_STRING" | sed -n 's/^.*var2=\([^&]*\).*$/\1/p')

Var2_Dec=$(echo -e $(echo "$Var2" | sed 's/+/ /g;s/%\(..\)/\\x\1/g;'))

 # create content for stdout

echo "<title>Bash-CGI Example 1</title>"

echo "</head><body>"

echo "<h1>Bash-CGI Example 1</h1>"

echo "<p>QUERY_STRING: ${QUERY_STRING}
var1=${Var1_Dec}
var2=${Var2_Dec}</p>" # print the values to stdout

else

echo "<title>456 Wrong Request Method</title>"

echo "</head><body>"

echo "<h1>456</h1>"

echo "<p>Requesting data went wrong.
The Request method has to be \" GET\" only!</p>"

fi

echo "<hr>"

echo "$SERVER_SIGNATURE" # an other environment variable

echo "</body></html>" # close html

exit 0

The html-document will look like this ...

<html><head>

<title> Bash-CGI Example 1</title>

</head><body>

<h1> Bash-CGI Example 1</h1>

<p> QUERY_STRING: var1=Hello%20World!&var2=This%20is%20a%20Test.&
 var1=Hello World!
 var2=This is a Test. </p>

<hr>

<address> Apache/2.4.10 (Debian) Server at example.com Port 80</address>

</body></html>

The output of the variables will look like this ...

var1=Hello%20World!& var2=This%20is%20a%20Test. &

Hello World!

This is a Test.

Apache/2.4.10 (Debian) Server at example.com Port 80

Negative side effects...

All the encoding and decoding does not look nice, but is needed

The Request will be public readable and leave a tray behind

The size of a request is limited

GoalKicker.com – Bash Notes for Professionals

174

Needs protection against Cross-Side-Scripting (XSS)

Section 59.2: Request Method: POST /w JSON

Using Request Method POST in combination with SSL makes datatransfer more secure.

In addition...

Most of the encoding and decoding is not needed any more

The URL will be visible to any one and needs to be url encoded.

The data will be send separately and therefor should be secured via SSL

The size of the data is almost unlitmited

Still needs protection against Cross-Side-Scripting (XSS)

To keep this showcase simple we want to receive JSON Data

and communication should be over Cross-Origin Resource Sharing (CORS).

The following script will also demonstrate two different Content-Types.

 #!/bin/bash

exec 2>/dev/null # We don't want any error messages be printed to stdout

trap "response_with_html && exit 0" ERR # response with an html message when an error occurred and close the script

function response_with_html(){

echo "Content-type: text/html"

echo ""

echo "<!DOCTYPE html>"

echo "<html><head>"

echo "<title>456</title>"

echo "</head><body>"

echo "<h1>456</h1>"

echo "<p>Attempt to communicate with the server went wrong.</p>"

echo "<hr>"

echo "$SERVER_SIGNATURE"

echo "</body></html>"

}

function response_with_json(){

echo "Content-type: application/json"

echo ""

echo "{\" message\" : \" Hello World! \" }"

}

if ["$REQUEST_METHOD" = "POST"]; then

 # The environment variabe $CONTENT_TYPE describes the data-type received

case "$CONTENT_TYPE" in

application/json)

 # The environment variabe $CONTENT_LENGTH describes the size of the data

read -n "$CONTENT_LENGTH" QUERY_STRING_POST # read datastream

 # The following lines will prevent XSS and check for valide JSON-Data.

 # But these Symbols need to be encoded somehow before sending to this script

QUERY_STRING_POST=$(echo "$QUERY_STRING_POST" | sed "s/'//g" | sed

's/\$//g;s/`//g;s/*//g;s/\\//g') # removes some symbols (like \ * ` $ ') to prevent XSS

 with Bash and SQL.

GoalKicker.com – Bash Notes for Professionals

175

 QUERY_STRING_POST=$(echo "$QUERY_STRING_POST" | sed -e :a -e 's/<[^>]*>//g;/</N;//ba') #

 removes most html declarations to prevent XSS within documents

JSON=$(echo "$QUERY_STRING_POST" | jq .) # json encode - This is a pretty save way to check for valide json code

;;

*)

response_with_html

exit 0

;;

esac

else

response_with_html

exit 0

fi

 # Some Commands ...

response_with_json

exit 0

You will get {"message":"Hello World!"} as an answer when sending JSON-Data via POST to this Script. Every thing else will receive the html document.

Important is also the varialbe $JSON. This variable is free of XSS, but still could have wrong values in it and needs to be verify first. Please keep that in mind.

This code works similar without JSON.

You could get any data this way.

You just need to change the Content-Type for your needs.

Example:

if ["$REQUEST_METHOD" = "POST"]; then

case "$CONTENT_TYPE" in

application/x-www-form-urlencoded)

read -n "$CONTENT_LENGTH" QUERY_STRING_POST

text/plain)

read -n "$CONTENT_LENGTH" QUERY_STRING_POST

;;

esac

fi

Last but not least, don't forget to response to all requests, otherwise third party programms won't know if they succeeded

GoalKicker.com – Bash Notes for Professionals

176

Chapter 60: Select keyword

Select keyword can be used for getting input argument in a menu format.

Section 60.1: Select keyword can be used for getting input

argument in a menu format

Suppose you want the user to SELECT keywords from a menu, we can create a script similar to

 #!/usr/bin/env bash

select os in "linux" "windows" "mac"

do

echo "${os}"

break

done

Explanation: Here SELECT keyword is used to loop through a list of items that will be presented at the command prompt for a user to pick from. Notice the break keyword for breaking out of the loop once the user makes a choice. Otherwise, the loop will be endless!

Results: Upon running this script, a menu of these items will be displayed and the user will be prompted for a

selection. Upon selection, the value will be displayed, returning back to command prompt.

>bash select_menu.sh

1) linux

2) windows

3) mac

 #? 3

mac

>

GoalKicker.com – Bash Notes for Professionals

177

Chapter 61: When to use eval

First and foremost: know what you're doing! Secondly, while you should avoid using eval, if its use makes for cleaner code, go ahead.

Section 61.1: Using Eval

For example, consider the following that sets the contents of $@ to the contents of a given variable:

a=(1 2 3)

eval set -- "${a[@]}"

This code is often accompanied by getopt or getopts to set $@ to the output of the aforementioned option parsers, however, you can also use it to create a simple pop function that can operate on variables silently and directly without having to store the result to the original variable:

isnum()

{

 # is argument an integer?

local re='^[0-9]+$'

if [[-n $1]]; then

[[$1 =~ $re]] && return 0

return 1

else

return 2

fi

}

isvar()

{

if isnum "$1"; then

return 1

fi

local arr="$(eval eval -- echo -n "\$$1")"

if [[-n ${arr[@]}]]; then

return 0

fi

return 1

}

pop()

{

if [[-z $@]]; then

return 1

fi

local var=

local isvar=0

local arr=()

if isvar "$1"; then # let's check to see if this is a variable or just a bare array

var="$1"

isvar=1

arr=($(eval eval -- echo -n " \${$1[@]}")) # if it is a var, get its contents else

arr=($@)

fi

GoalKicker.com – Bash Notes for Professionals

178

 # we need to reverse the contents of $@ so that we can shift

 # the last element into nothingness

arr=($(awk <<< "${arr[@]}" '{ for (i=NF; i>1; --i) printf("%s ",$i); print $1; }'

 # set $@ to ${arr[@]} so that we can run shift against it.

eval set -- "${arr[@]}"

shift # remove the last element

 # put the array back to its original order

arr=($(awk <<< "$@" '{ for (i=NF; i>1; --i) printf("%s ",$i); print $1; }'

 # echo the contents for the benefit of users and for bare arrays

echo "${arr[@]}"

if ((isvar)); then

 # set the contents of the original var to the new modified array

eval -- "$var=(${arr[@]})"

fi

}

Section 61.2: Using Eval with Getopt

While eval may not be needed for a pop like function, it is however required whenever you use getopt:

Consider the following function that accepts -h as an option:

f()

{

local __me__="${FUNCNAME[0]}"

local argv="$(getopt -o 'h' -n $__me__ -- "$@")"

eval set -- "$argv"

while :; do

case "$1" in

-h)

echo "LOLOLOLOL"

return 0

;;

--)

shift

break

;;

done

echo "$@"

}

Without eval set -- "$argv" generates

-h --

instead of the desired (-h --) and subsequently enters an infinite loop because

-h --

doesn't match -- or -h.

GoalKicker.com – Bash Notes for Professionals

179

Chapter 62: Networking With Bash

Bash is often commonly used in the management and maintenance of servers and clusters. Information pertaining

to typical commands used by network operations, when to use which command for which purpose, and

examples/samples of unique and/or interesting applications of it should be included

Section 62.1: Networking commands

ifconfig

The above command will show all active interface of the machine and also give the information of

1. IP address assign to interface

2. MAC address of the interface

3. Broadcast address

4. Transmit and Receive bytes

Some example

ifconfig -a

The above command also show the disable interface

ifconfig eth0

The above command will only show the eth0 interface

ifconfig eth0 192.168.1.100 netmask 255.255.255.0

The above command will assign the static IP to eth0 interface

ifup eth0

The above command will enable the eth0 interface

ifdown eth0

The below command will disable the eth0 interface

ping

The above command (Packet Internet Grouper) is to test the connectivity between the two nodes

ping -c2 8.8.8.8

The above command will ping or test the connectivity with google server for 2 seconds.

traceroute

The above command is to use in troubleshooting to find out the number of hops taken to reach the destination.

netstat

GoalKicker.com – Bash Notes for Professionals

180

The above command (Network statistics) give the connection info and their state

dig www.google.com

The above command (domain information grouper) query the DNS related information

nslookup www.google.com

The above command query the DNS and find out the IP address of corresponding the website name.

route

The above command is used to check the Netwrok route information. It basically show you the routing table

router add default gw 192.168.1.1 eth0

The above command will add the default route of network of eth0 Interface to 192.168.1.1 in routing table.

route del default

The above command will delete the default route from the routing table

GoalKicker.com – Bash Notes for Professionals

181

Chapter 63: Parallel

Option

Description

-j n

Run n jobs in parallel

-k

Keep same order

-X

Multiple arguments with context replace

--colsep regexp

Split input on regexp for positional replacements

{} {. } {/} {/. } { #} Replacement strings

{3} {3. } {3/} {3/. } Positional replacement strings

-S sshlogin

Example: foo@server.example.com

--trc {}.bar

Shorthand for --transfer --return {}.bar --cleanup

--onall

Run the given command with argument on all sshlogins

--nonall

Run the given command with no arguments on all sshlogins

--pipe

Split stdin (standard input) to multiple jobs.

--recend str

Record end separator for --pipe.

--recstart str

Record start separator for --pipe.

Jobs in GNU Linux can be parallelized using GNU parallel. A job can be a single command or a small script that has to be run for each of the lines in the input. The typical input is a list of files, a list of hosts, a list of users, a list of URLs, or a list of tables. A job can also be a command that reads from a pipe.

Section 63.1: Parallelize repetitive tasks on list of files

Many repetitive jobs can be performed more efficiently if you utilize more of your computer's resources (i.e. CPU's and RAM). Below is an example of running multiple jobs in parallel.

Suppose you have a < list of files > , say output from ls. Also, let these files are bz2 compressed and the following order of tasks need to be operated on them.

1. Decompress the bz2 files using bzcat to stdout

2. Grep (e.g. filter) lines with specific keyword(s) using grep < some key word>

3. Pipe the output to be concatenated into one single gzipped file using gzip

Running this using a while-loop may look like this

filenames="file_list.txt"

while read -r line

do

name="$line"

 ## grab lines with puppies in them

bzcat $line | grep puppies | gzip >> output.gz

done < "$filenames"

Using GNU Parallel, we can run 3 parallel jobs at once by simply doing

parallel -j 3 "bzcat {} | grep puppies" ::: $(cat filelist.txt) | gzip > output.gz This command is simple, concise and more efficient when number of files and file size is large. The jobs gets

initiated by parallel, option -j 3 launches 3 parallel jobs and input to the parallel jobs is taken in by :::. The output is eventually piped to gzip > output.gz

GoalKicker.com – Bash Notes for Professionals

182

Section 63.2: Parallelize STDIN

Now, let's imagine we have 1 large file (e.g. 30 GB) that needs to be converted, line by line. Say we have a script, convert.sh, that does this <task> . We can pipe contents of this file to stdin for parallel to take in and work with in chunks such as

<stdin> | parallel --pipe --block <block size> -k <task> > output.txt where <stdin> can originate from anything such as cat <file> .

As a reproducible example, our task will be nl -n rz. Take any file, mine will be data.bz2, and pass it to <stdin> bzcat data.bz2 | nl | parallel --pipe --block 10M -k nl -n rz | gzip > ouptput.gz The above example takes <stdin> from bzcat data.bz2 | nl, where I included nl just as a proof of concept that the final output output.gz will be saved in the order it was received. Then, parallel divides the <stdin> into chunks of size 10 MB, and for each chunk it passes it through nl -n rz where it just appends a numbers rightly justified (see nl --help for further details). The options --pipe tells parallel to split <stdin> into multiple jobs and -- block specifies the size of the blocks. The option -k specifies that ordering must be maintained.

Your final output should look something like

000001 1 < data>

000002 2 < data>

000003 3 < data>

000004 4 < data>

000005 5 < data>

...

000587 552409 < data>

000588 552410 < data>

000589 552411 < data>

000590 552412 < data>

000591 552413 < data>

My original file had 552,413 lines. The first column represents the parallel jobs, and the second column represents the original line numbering that was passed to parallel in chunks. You should notice that the order in the second column (and rest of the file) is maintained.

GoalKicker.com – Bash Notes for Professionals

183

Chapter 64: Decoding URL

Section 64.1: Simple example

Encoded URL

http%3A%2F%2Fwww.foo.com%2Findex.php%3Fid%3Dqwerty

Use this command to decode the URL

echo "http%3A%2F%2Fwww.foo.com%2Findex.php%3Fid%3Dqwerty" | sed -e "s/%\([0-9A-F][0-9A-F]\)/\\\\\x\1/g" | xargs -0 echo -e

Decoded URL (result of command)

http://www.foo.com/index.php?id=qwerty

Section 64.2: Using printf to decode a string

 #!bin/bash

$ string='Question%20-

%20%22how%20do%20I%20decode%20a%20percent%20encoded%20string%3F%22%0AAnswer%20%20%20-

%20Use%20printf%20%3A)'

$ printf '%b\n' "${string//%/\\x}"

 # the result

Question - "how do I decode a percent encoded string?"

Answer - Use printf :)

GoalKicker.com – Bash Notes for Professionals

184

Chapter 65: Design Patterns

Accomplish some common design patterns in Bash

Section 65.1: The Publish/Subscribe (Pub/Sub) Pattern

When a Bash project turns into a library, it can become difficult to add new functionality. Function names, variables and parameters usually need to be changed in the scripts that utilize them. In scenarios like this, it is helpful to decouple the code and use an event driven design pattern. In said pattern, an external script can subscribe to an event. When that event is triggered (published) the script can execute the code that it registered with the event.

pubsub.sh:

 #!/usr/bin/env bash

 #

 # Save the path to this script's directory in a global env variable

 #

DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

#

Array that will contain all registered events

#

EVENTS=()

function action1() {

echo "Action #1 was performed ${2}"

}

function action2() {

echo "Action #2 was performed"

}

 #

 # @desc :: Registers an event

 # @param :: string $1 - The name of the event. Basically an alias for a function name

 # @param :: string $2 - The name of the function to be called

 # @param :: string $3 - Full path to script that includes the function being called

 #

function subscribe() {

EVENTS+=("${1};${2};${3}")

}

 #

 # @desc :: Public an event

 # @param :: string $1 - The name of the event being published

 #

function publish() {

for event in ${EVENTS[@]}; do

local IFS=";"

read -r -a event <<< "$event"

if [["${event[0]}" == "${1}"]]; then

${event[1]} "$@"

fi

done

}

 #

 # Register our events and the functions that handle them

GoalKicker.com – Bash Notes for Professionals

185

 #

subscribe "/do/work" "action1" "${DIR}"

subscribe "/do/more/work" "action2" "${DIR}"

subscribe "/do/even/more/work" "action1" "${DIR}"

 #

 # Execute our events

 #

publish "/do/work"

publish "/do/more/work"

publish "/do/even/more/work" "again"

Run:

chmod +x pubsub.sh

. /pubsub.sh

GoalKicker.com – Bash Notes for Professionals

186

Chapter 66: Pitfalls

Section 66.1: Whitespace When Assigning Variables

Whitespace matters when assigning variables.

foo = 'bar' # incorrect

foo= 'bar' # incorrect

foo='bar' # correct

The first two will result in syntax errors (or worse, executing an incorrect command). The last example will correctly set the variable $foo to the text "bar".

Section 66.2: Failed commands do not stop script execution

In most scripting languages, if a function call fails, it may throw an exception and stop execution of the program.

Bash commands do not have exceptions, but they do have exit codes. A non-zero exit code signals failure, however, a non-zero exit code will not stop execution of the program.

This can lead to dangerous (although admittedly contrived) situations like so:

 #!/bin/bash

cd ~/non/existent/directory

rm -rf *

If cd-ing to this directory fails, Bash will ignore the failure and move onto the next command, wiping clean the directory from where you ran the script.

The best way to deal with this problem is to make use of the set command:

 #!/bin/bash

set -e

cd ~/non/existent/directory

rm -rf *

set -e tells Bash to exit the script immediately if any command returns a non-zero status.

Section 66.3: Missing The Last Line in a File

The C standard says that files should end with a new line, so if EOF comes at the end of a line, that line may not be missed by some commands. As an example:

$ echo 'one\ntwo\nthree\c' > file.txt

$ cat file.txt

one

two

three

$ while read line ; do echo "line $line" ; done < file.txt one

two

To make sure this works correctly for in the above example, add a test so that it will continue the loop if the last line is not empty.

GoalKicker.com – Bash Notes for Professionals

187

$ while read line || [-n "$line"] ; do echo "line $line" ; done < file.txt one

two

three

GoalKicker.com – Bash Notes for Professionals

188

Appendix A: Keyboard shortcuts

Section A.1: Editing Shortcuts

Shortcut

Description

Ctrl + a

move to the beginning of the line

Ctrl + e

move to the end of the line

Ctrl + k

Kill the text from the current cursor position to the end of the line.

Ctrl + u

Kill the text from the current cursor position to the beginning of the line

Ctrl + w

Kill the word behind the current cursor position

Alt + b

move backward one word

Alt + f

move forward one word

Ctrl + Alt + e shell expand line

Ctrl + y

Yank the most recently killed text back into the buffer at the cursor.

Rotate through killed text. You can only do this if the prior command is Ctrl + y or

Alt + y

Alt + y .

Killing text will delete text, but save it so that the user can reinsert it by yanking. Similar to cut and paste except that the text is placed on a kill ring which allows for storing more than one set of text to be yanked back on to the command line.

You can find out more in the emacs manual.

Section A.2: Recall Shortcuts

Shortcut

Description

Ctrl + r

search the history backwards

Ctrl + p

previous command in history

Ctrl + n

next command in history

Ctrl + g

quit history searching mode

Alt + .

use the last word of the previous command

repeat to get the last word of the previous + 1 command

Alt + n Alt + . use the nth word of the previous command

!! + Return

execute the last command again (useful when you forgot sudo: sudo !!)

Section A.3: Macros

Shortcut

Description

Ctrl + x , (start recording a macro

Ctrl + x ,) stop recording a macro

Ctrl + x , e execute the last recorded macro

Section A.4: Custome Key Bindings

With the bind command it is possible to define custom key bindings.

The next example bind an Alt + w to >/dev/null 2>& 1:

bind '"\ew"':" \" >/dev/null 2>&1\" "

GoalKicker.com – Bash Notes for Professionals

189

If you want to execute the line immediately add \C-m (Enter) to it:

bind '"\ew"':" \" >/dev/null 2>&1\C-m\" "

Section A.5: Job Control

Shortcut

Description

Ctrl + c Stop the current job

Ctrl + z Suspend the current job (send a SIGTSTP signal)

GoalKicker.com – Bash Notes for Professionals

190

Credits

Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,

more changes can be sent to web@petercv.com for new content to be published or updated

Ajay Sangale

Chapter 1

Ajinkya

Chapter 20

Alessandro Mascolo

Chapters 11 and 26

Alexej Magura

Chapters 9, 12, 36 and 61

Amir Rachum

Chapter 8

Anil

Chapter 1

anishsane

Chapter 5

Antoine Bolvy

Chapter 9

Archemar

Chapter 9

Arronical

Chapter 12

Ashari

Chapter 36

Ashkan

Chapters 36 and 43

Batsu

Chapter 17

Benjamin W.

Chapters 1, 9, 12, 15, 24, 31, 36, 46 and 47

binki

Chapter 21

Blachshma

Chapter 1

Bob Bagwill

Chapter 1

Bostjan

Chapter 7

BrunoLM

Chapter 14

Brydon Gibson

Chapter 9

Bubblepop

Chapters 1, 5, 8, 12 and 24

Burkhard

Chapter 1

BurnsBA

Chapter 22

Carpetsmoker

Chapter 47

cb0

Chapter 28

Chandrahas Aroori

Chapter 6

chaos

Chapter 9

charneykaye

Chapter 50

chepner

Chapters 15, 27 and 46

Chris Rasys

Chapter 34

Christopher Bottoms

Chapters 1, 3 and 5

codeforester

Chapter 12

Cody

Chapter 66

Colin Yang

Chapter 1

Cows quack

Chapter 30

CraftedCart

Chapter 1

CrazyMax

Chapter 64

criw

Chapter 36

Daniel Käfer

Chapter 67

Danny

Chapter 1

Dario

Chapters 28, 36 and 55

David Grayson

Chapter 9

Deepak K M

Chapter 20

deepmax

Chapter 25

depperm

Chapters 4 and 35

dhimanta

Chapter 62

dimo414

Chapter 14

GoalKicker.com – Bash Notes for Professionals

191

dingalapadum

Chapters 7 and 16

divyum

Chapters 1 and 14

DocSalvager

Chapter 10

Doctor J

Chapter 28

DonyorM

Chapter 10

Dr Beco

Chapter 36

Dunatotatos

Chapter 51

Echoes_86

Chapter 17

Edgar Rokjān

Chapter 10

edi9999

Chapter 14

Eric Renouf

Chapter 9

fedorqui

Chapters 12, 15, 17, 20, 28 and 34

fifaltra

Chapters 8 and 53

Flows

Chapter 18

Gavyn

Chapters 9, 26, 33 and 36

George Vasiliou

Chapters 9, 15 and 58

Gilles

Chapters 21 and 22

glenn jackman

Chapters 1, 4, 5 and 7

Grexis

Chapter 15

Grisha Levit

Chapter 36

gzh

Chapter 10

hedgar2017

Chapters 9, 15 and 22

Holt Johnson

Chapter 4

I0_ol

Chapter 64

Iain

Chapters 4 and 20

IamaTacos

Chapter 35

Inanc Gumus

Chapter 1

Inian

Chapters 17 and 28

intboolstring

Chapters 4, 5 and 7

Jahid

Chapters 1, 5, 9, 10, 12, 14, 15, 17, 20, 21, 22, 23, 30, 34, 39, 43, 44 and 45

James Taylor

Chapter 23

Jamie Metzger

Chapter 31

jandob

Chapter 29

janos

Chapters 7, 10, 12, 14, 20 and 24

Jeffrey Lin

Chapter 49

JepZ

Chapter 3

jerblack

Chapter 12

Jesse Chen

Chapters 15, 26 and 45

JHS

Chapters 7, 19 and 67

jimsug

Chapter 24

John Kugelman

Chapter 12

Jon

Chapter 63

Jon Ericson

Chapter 9

Jonny Henly

Chapter 4

jordi

Chapter 48

Judd Rogers

Chapters 9 and 67

Kelum Senanayake

Chapter 23

ksoni

Chapter 30

leftaroundabout

Chapter 17

Leo Ufimtsev

Chapter 33

liborm

Chapter 9

lynxlynxlynx

Chapter 43

m02ph3u5

Chapter 67

GoalKicker.com – Bash Notes for Professionals

192

markjwill

Chapter 12

Markus V.

Chapter 4

Mateusz Piotrowski

Chapter 12

Matt Clark

Chapters 1, 9, 14, 17, 19 and 23

mattmc

Chapters 36 and 65

Michael Le Barbier

Grünewald

Chapter 14

Mike Metzger

Chapter 8

miken32

Chapters 9 and 10

Misa Lazovic

Chapters 4 and 30

Mohima Chaudhuri

Chapters 18 and 41

nautical

Chapter 34

NeilWang

Chapter 12

Neui

Chapter 8

Ocab19

Chapter 58

ormaaj

Chapter 12

Osaka

Chapter 4

P.P.

Chapter 38

Pavel Kazhevets

Chapter 25

Peter Uhnak

Chapter 31

phs

Chapter 47

Pooyan Khosravi

Chapter 9

Rafa Moyano

Chapter 42

Reboot

Chapter 42

Riccardo Petraglia

Chapter 8

Richard Hamilton

Chapters 4, 16, 41 and 57

Riker

Chapters 1 and 40

Roman Piták

Chapter 47

Root

Chapters 5, 8 and 9

Sameer Srivastava

Chapter 8

Samik

Chapters 4, 5, 10, 12, 14 and 37

Samuel

Chapter 5

Saqib Rokadia

Chapter 67

satyanarayan rao

Chapter 1

Scroff

Chapter 66

Sergey

Chapter 14

sjsam

Chapters 1 and 32

Sk606

Chapters 8, 12 and 33

Skynet

Chapter 45

SLePort

Chapters 5 and 10

Stephane Chazelas

Chapters 15 and 36

Stobor

Chapter 20

suleiman

Chapter 59

Sundeep

Chapter 1

Sylvain Bugat

Chapters 2, 4, 9, 14 and 15

Thomas Champion

Chapter 56

Tim Rijavec

Chapter 25

TomOnTime

Chapter 47

Trevor Clarke

Chapter 1

tripleee

Chapters 1, 5, 14, 17 and 36

tversteeg

Chapter 30

uhelp

Chapters 2, 7, 13, 20, 31, 36, 47, 48, 52, 53 and 54

UNagaswamy

Chapters 12, 13 and 60

GoalKicker.com – Bash Notes for Professionals

193

user1336087

Chapters 1 and 26

vielmetti

Chapter 5

vmaroli

Chapter 39

Warren Harper

Chapter 9

Wenzhong

Chapter 30

Will

Chapters 12, 15 and 21

Will Barnwell

Chapter 24

William Pursell

Chapters 1, 36 and 49

Wojciech Kazior

Chapter 36

Wolfgang

Chapter 9

xhienne

Chapter 5

ymbirtt

Chapter 15

zarak

Chapters 8, 24 and 31

Zaz

Chapter 1

Мона_Сах

Chapter 28

南山竹

Chapters 1, 5, 9, 12 and 17

GoalKicker.com – Bash Notes for Professionals

194

You may also like

Document Outline

	Content list

	About

	Chapter 1: Getting started with Bash

	Section 1.1: Hello World

	Section 1.2: Hello World Using Variables

	Section 1.3: Hello World with User Input

	Section 1.4: Importance of Quoting in Strings

	Section 1.5: Viewing information for Bash built-ins

	Section 1.6: Hello World in "Debug" mode

	Section 1.7: Handling Named Arguments

	Chapter 2: Script shebang

	Section 2.1: Env shebang

	Section 2.2: Direct shebang

	Section 2.3: Other shebangs

	Chapter 3: Navigating directories

	Section 3.1: Absolute vs relative directories

	Section 3.2: Change to the last directory

	Section 3.3: Change to the home directory

	Section 3.4: Change to the Directory of the Script

	Chapter 4: Listing Files

	Section 4.1: List Files in a Long Listing Format

	Section 4.2: List the Ten Most Recently Modified Files

	Section 4.3: List All Files Including Dotfiles

	Section 4.4: List Files Without Using `ls`

	Section 4.5: List Files

	Section 4.6: List Files in a Tree-Like Format

	Section 4.7: List Files Sorted by Size

	Chapter 5: Using cat

	Section 5.1: Concatenate files

	Section 5.2: Printing the Contents of a File

	Section 5.3: Write to a file

	Section 5.4: Show non printable characters

	Section 5.5: Read from standard input

	Section 5.6: Display line numbers with output

	Section 5.7: Concatenate gzipped files

	Chapter 6: Grep

	Section 6.1: How to search a file for a pattern

	Chapter 7: Aliasing

	Section 7.1: Bypass an alias

	Section 7.2: Create an Alias

	Section 7.3: Remove an alias

	Section 7.4: The BASH_ALIASES is an internal bash assoc array

	Section 7.5: Expand alias

	Section 7.6: List all Aliases

	Chapter 8: Jobs and Processes

	Section 8.1: Job handling

	Section 8.2: Check which process running on specific port

	Section 8.3: Disowning background job

	Section 8.4: List Current Jobs

	Section 8.5: Finding information about a running process

	Section 8.6: List all processes

	Chapter 9: Redirection

	Section 9.1: Redirecting standard output

	Section 9.2: Append vs Truncate

	Section 9.3: Redirecting both STDOUT and STDERR

	Section 9.4: Using named pipes

	Section 9.5: Redirection to network addresses

	Section 9.6: Print error messages to stderr

	Section 9.7: Redirecting multiple commands to the same file

	Section 9.8: Redirecting STDIN

	Section 9.9: Redirecting STDERR

	Section 9.10: STDIN, STDOUT and STDERR explained

	Chapter 10: Control Structures

	Section 10.1: Conditional execution of command lists

	Section 10.2: If statement

	Section 10.3: Looping over an array

	Section 10.4: Using For Loop to List Iterate Over Numbers

	Section 10.5: continue and break

	Section 10.6: Loop break

	Section 10.7: While Loop

	Section 10.8: For Loop with C-style syntax

	Section 10.9: Until Loop

	Section 10.10: Switch statement with case

	Section 10.11: For Loop without a list-of-words parameter

	Chapter 11: true, false and : commands

	Section 11.1: Infinite Loop

	Section 11.2: Function Return

	Section 11.3: Code that will always/never be executed

	Chapter 12: Arrays

	Section 12.1: Array Assignments

	Section 12.2: Accessing Array Elements

	Section 12.3: Array Modification

	Section 12.4: Array Iteration

	Section 12.5: Array Length

	Section 12.6: Associative Arrays

	Section 12.7: Looping through an array

	Section 12.8: Destroy, Delete, or Unset an Array

	Section 12.9: Array from string

	Section 12.10: List of initialized indexes

	Section 12.11: Reading an entire file into an array

	Section 12.12: Array insert function

	Chapter 13: Associative arrays

	Section 13.1: Examining assoc arrays

	Chapter 14: Functions

	Section 14.1: Functions with arguments

	Section 14.2: Simple Function

	Section 14.3: Handling flags and optional parameters

	Section 14.4: Print the function definition

	Section 14.5: A function that accepts named parameters

	Section 14.6: Return value from a function

	Section 14.7: The exit code of a function is the exit code of its last command

	Chapter 15: Bash Parameter Expansion

	Section 15.1: Modifying the case of alphabetic characters

	Section 15.2: Length of parameter

	Section 15.3: Replace pattern in string

	Section 15.4: Substrings and subarrays

	Section 15.5: Delete a pattern from the beginning of a string

	Section 15.6: Parameter indirection

	Section 15.7: Parameter expansion and filenames

	Section 15.8: Default value substitution

	Section 15.9: Delete a pattern from the end of a string

	Section 15.10: Munging during expansion

	Section 15.11: Error if variable is empty or unset

	Chapter 16: Copying (cp)

	Section 16.1: Copy a single file

	Section 16.2: Copy folders

	Chapter 17: Find

	Section 17.1: Searching for a file by name or extension

	Section 17.2: Executing commands against a found file

	Section 17.3: Finding file by access / modification time

	Section 17.4: Finding files according to size

	Section 17.5: Filter the path

	Section 17.6: Finding files by type

	Section 17.7: Finding files by specific extension

	Chapter 18: Using sort

	Section 18.1: Sort command output

	Section 18.2: Make output unique

	Section 18.3: Numeric sort

	Section 18.4: Sort by keys

	Chapter 19: Sourcing

	Section 19.1: Sourcing a file

	Section 19.2: Sourcing a virtual environment

	Chapter 20: Here documents and here strings

	Section 20.1: Execute command with here document

	Section 20.2: Indenting here documents

	Section 20.3: Create a file

	Section 20.4: Here strings

	Section 20.5: Run several commands with sudo

	Section 20.6: Limit Strings

	Chapter 21: Quoting

	Section 21.1: Double quotes for variable and command substitution

	Section 21.2: Dierence between double quote and single quote

	Section 21.3: Newlines and control characters

	Section 21.4: Quoting literal text

	Chapter 22: Conditional Expressions

	Section 22.1: File type tests

	Section 22.2: String comparison and matching

	Section 22.3: Test on exit status of a command

	Section 22.4: One liner test

	Section 22.5: File comparison

	Section 22.6: File access tests

	Section 22.7: Numerical comparisons

	Chapter 23: Scripting with Parameters

	Section 23.1: Multiple Parameter Parsing

	Section 23.2: Argument parsing using a for loop

	Section 23.3: Wrapper script

	Section 23.4: Accessing Parameters

	Section 23.5: Split string into an array in Bash

	Chapter 24: Bash history substitutions

	Section 24.1: Quick Reference

	Section 24.2: Repeat previous command with sudo

	Section 24.3: Search in the command history by pattern

	Section 24.4: Switch to newly created directory with !#:N

	Section 24.5: Using !$

	Section 24.6: Repeat the previous command with a substitution

	Chapter 25: Math

	Section 25.1: Math using dc

	Section 25.2: Math using bash capabilities

	Section 25.3: Math using bc

	Section 25.4: Math using expr

	Chapter 26: Bash Arithmetic

	Section 26.1: Simple arithmetic with (())

	Section 26.2: Arithmetic command

	Section 26.3: Simple arithmetic with expr

	Chapter 27: Scoping

	Section 27.1: Dynamic scoping in action

	Chapter 28: Process substitution

	Section 28.1: Compare two files from the web

	Section 28.2: Feed a while loop with the output of a command

	Section 28.3: Concatenating files

	Section 28.4: Stream a file through multiple programs at once

	Section 28.5: With paste command

	Section 28.6: To avoid usage of a sub-shell

	Chapter 29: Programmable completion

	Section 29.1: Simple completion using function

	Section 29.2: Simple completion for options and filenames

	Chapter 30: Customizing PS1

	Section 30.1: Colorize and customize terminal prompt

	Section 30.2: Show git branch name in terminal prompt

	Section 30.3: Show time in terminal prompt

	Section 30.4: Show a git branch using PROMPT_COMMAND

	Section 30.5: Change PS1 prompt

	Section 30.6: Show previous command return status and time

	Chapter 31: Brace Expansion

	Section 31.1: Modifying filename extension

	Section 31.2: Create directories to group files by month and year

	Section 31.3: Create a backup of dotfiles

	Section 31.4: Use increments

	Section 31.5: Using brace expansion to create lists

	Section 31.6: Make Multiple Directories with Sub-Directories

	Chapter 32: getopts : smart positional-parameter parsing

	Section 32.1: pingnmap

	Chapter 33: Debugging

	Section 33.1: Checking the syntax of a script with "-n"

	Section 33.2: Debugging using bashdb

	Section 33.3: Debugging a bash script with "-x"

	Chapter 34: Pattern matching and regular expressions

	Section 34.1: Get captured groups from a regex match against a string

	Section 34.2: Behaviour when a glob does not match anything

	Section 34.3: Check if a string matches a regular expression

	Section 34.4: Regex matching

	Section 34.5: The * glob

	Section 34.6: The ** glob

	Section 34.7: The ? glob

	Section 34.8: The [] glob

	Section 34.9: Matching hidden files

	Section 34.10: Case insensitive matching

	Section 34.11: Extended globbing

	Chapter 35: Change shell

	Section 35.1: Find the current shell

	Section 35.2: List available shells

	Section 35.3: Change the shell

	Chapter 36: Internal variables

	Section 36.1: Bash internal variables at a glance

	Section 36.2: $@

	Section 36.3: $#

	Section 36.4: $HISTSIZE

	Section 36.5: $FUNCNAME

	Section 36.6: $HOME

	Section 36.7: $IFS

	Section 36.8: $OLDPWD

	Section 36.9: $PWD

	Section 36.10: $1 $2 $3 etc..

	Section 36.11: $*

	Section 36.12: $!

	Section 36.13: $?

	Section 36.14: $$

	Section 36.15: $RANDOM

	Section 36.16: $BASHPID

	Section 36.17: $BASH_ENV

	Section 36.18: $BASH_VERSINFO

	Section 36.19: $BASH_VERSION

	Section 36.20: $EDITOR

	Section 36.21: $HOSTNAME

	Section 36.22: $HOSTTYPE

	Section 36.23: $MACHTYPE

	Section 36.24: $OSTYPE

	Section 36.25: $PATH

	Section 36.26: $PPID

	Section 36.27: $SECONDS

	Section 36.28: $SHELLOPTS

	Section 36.29: $_

	Section 36.30: $GROUPS

	Section 36.31: $LINENO

	Section 36.32: $SHLVL

	Section 36.33: $UID

	Chapter 37: Job Control

	Section 37.1: List background processes

	Section 37.2: Bring a background process to the foreground

	Section 37.3: Restart stopped background process

	Section 37.4: Run command in background

	Section 37.5: Stop a foreground process

	Chapter 38: Case statement

	Section 38.1: Simple case statement

	Section 38.2: Case statement with fall through

	Section 38.3: Fall through only if subsequent pattern(s) match

	Chapter 39: Read a file (data stream, variable) line-by-line (and/or field-by-field)?

	Section 39.1: Looping through a file line by line

	Section 39.2: Looping through the output of a command field by field

	Section 39.3: Read lines of a file into an array

	Section 39.4: Read lines of a string into an array

	Section 39.5: Looping through a string line by line

	Section 39.6: Looping through the output of a command line by line

	Section 39.7: Read a file field by field

	Section 39.8: Read a string field by field

	Section 39.9: Read fields of a file into an array

	Section 39.10: Read fields of a string into an array

	Section 39.11: Reads file (/etc/passwd) line by line and field by field

	Chapter 40: File execution sequence

	Section 40.1: .profile vs .bash_profile (and .bash_login)

	Chapter 41: Splitting Files

	Section 41.1: Split a file

	Chapter 42: File Transfer using scp

	Section 42.1: scp transferring file

	Section 42.2: scp transferring multiple files

	Section 42.3: Downloading file using scp

	Chapter 43: Pipelines

	Section 43.1: Using |&

	Section 43.2: Show all processes paginated

	Section 43.3: Modify continuous output of a command

	Chapter 44: Managing PATH environment variable

	Section 44.1: Add a path to the PATH environment variable

	Section 44.2: Remove a path from the PATH environment variable

	Chapter 45: Word splitting

	Section 45.1: What, when and Why?

	Section 45.2: Bad eects of word splitting

	Section 45.3: Usefulness of word splitting

	Section 45.4: Splitting by separator changes

	Section 45.5: Splitting with IFS

	Section 45.6: IFS & word splitting

	Chapter 46: Avoiding date using printf

	Section 46.1: Get the current date

	Section 46.2: Set variable to current time

	Chapter 47: Using "trap" to react to signals and system events

	Section 47.1: Introduction: clean up temporary files

	Section 47.2: Catching SIGINT or Ctl+C

	Section 47.3: Accumulate a list of trap work to run at exit

	Section 47.4: Killing Child Processes on Exit

	Section 47.5: react on change of terminals window size

	Chapter 48: Chain of commands and operations

	Section 48.1: Counting a text pattern ocurrence

	Section 48.2: transfer root cmd output to user file

	Section 48.3: logical chaining of commands with && and ||

	Section 48.4: serial chaining of commands with semicolon

	Section 48.5: chaining commands with |

	Chapter 49: Type of Shells

	Section 49.1: Start an interactive shell

	Section 49.2: Detect type of shell

	Section 49.3: Introduction to dot files

	Chapter 50: Color script output (cross-platform)

	Section 50.1: color-output.sh

	Chapter 51: co-processes

	Section 51.1: Hello World

	Chapter 52: Typing variables

	Section 52.1: declare weakly typed variables

	Chapter 53: Jobs at specific times

	Section 53.1: Execute job once at specific time

	Section 53.2: Doing jobs at specified times repeatedly using systemd.timer

	Chapter 54: Handling the system prompt

	Section 54.1: Using the PROMPT_COMMAND envrionment variable

	Section 54.2: Using PS2

	Section 54.3: Using PS3

	Section 54.4: Using PS4

	Section 54.5: Using PS1

	Chapter 55: The cut command

	Section 55.1: Only one delimiter character

	Section 55.2: Repeated delimiters are interpreted as empty fields

	Section 55.3: No quoting

	Section 55.4: Extracting, not manipulating

	Chapter 56: Bash on Windows 10

	Section 56.1: Readme

	Chapter 57: Cut Command

	Section 57.1: Show the first column of a file

	Section 57.2: Show columns x to y of a file

	Chapter 58: global and local variables

	Section 58.1: Global variables

	Section 58.2: Local variables

	Section 58.3: Mixing the two together

	Chapter 59: CGI Scripts

	Section 59.1: Request Method: GET

	Section 59.2: Request Method: POST /w JSON

	Chapter 60: Select keyword

	Section 60.1: Select keyword can be used for getting input argument in a menu format

	Chapter 61: When to use eval

	Section 61.1: Using Eval

	Section 61.2: Using Eval with Getopt

	Chapter 62: Networking With Bash

	Section 62.1: Networking commands

	Chapter 63: Parallel

	Section 63.1: Parallelize repetitive tasks on list of files

	Section 63.2: Parallelize STDIN

	Chapter 64: Decoding URL

	Section 64.1: Simple example

	Section 64.2: Using printf to decode a string

	Chapter 65: Design Patterns

	Section 65.1: The Publish/Subscribe (Pub/Sub) Pattern

	Chapter 66: Pitfalls

	Section 66.1: Whitespace When Assigning Variables

	Section 66.2: Failed commands do not stop script execution

	Section 66.3: Missing The Last Line in a File

	Appendix A: Keyboard shortcuts

	Section A.1: Editing Shortcuts

	Section A.2: Recall Shortcuts

	Section A.3: Macros

	Section A.4: Custome Key Bindings

	Section A.5: Job Control

	Credits

	You may also like

index-204_2.jpg
CH

Notes for Professionals

700+ pages

index-204_6.jpg
PHP

Notes for Professionals

400+ pages

index-204_5.jpg
Linux

Notes for Professionals

50+ pages

GoalKicker.ct

index-204_1.jpg
C |

Notes for Professionals

GoalKicker.com

e

index-204_7.jpg
PowerShell

Notes for Professionals

GoalKicker.com

cover.jpeg
Bash

Notes for Professionals

Chapter 21: Quoting

Section 211 Double quotes for variable and command
substitution

¢ 12: ArTouS

oy hesignmen®

chopte!

gection 2% A"

Section 21.2: Difference between double quote and single

100+ pages

of professional hints and tricks

. Disclaimer

(11] This is an unofficial free book created for educational purposes and is

Goa I KICker‘co N not affiliated with official Bash group(?%r (F:)ompong(s),
Free Progrommmg Books All trademarks and registered trademarks dare

the property of their respective owners

index-204_9.jpg
R

Notes for Professionals

400+ pages

r.com

index-167_1.jpg
First of
~I.bash_profile

index-1_1.jpg
Chapter 21: Quoting

Section 21.1: Double quotes for variable and command
substitution

Section 212: Difference between double quote and single

index-117_1.jpg
v [22:50:55] wenzhong@musicforever
$ date
Sun Sep 4 22:51:00 CST 2016

index-178_1.jpg
TEUser@TEIWin7 MINGW3Z ~
S pwd
/c/Users /TEUser

IEUSer@IEgWing MINGWIZ ~
s

index-204_3.jpg
C++

Notes for Professionals

600+ pages

GoalKicker.ct

index-204_4.jpg
LaTeX

Notes for Professionals

50+ pages

GoalKicker.com

index-204_8.jpg
Python

Notes for Professionals

index-113_1.jpg
[05:41:33 PH] jahid@Xunix-PC
[sudo] password for jahi.
[05:41:41 PH] root@¥unix-PC

6

Git/Githubi/neurokin/Lcget (master) :/$ sudo -s

+/6ithub/neurob;

1/leget (master)

1/

